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ABSTRACT

We present a pseudoparticle nonequilibrium Green function formalism as a tool to study the coupling between
plasmons and excitons in nonequilibrium molecular junctions. The formalism treats plasmon-exciton couplings
and intra-molecular interactions exactly, and is shown to be especially convenient for exploration of plasmonic
absorption spectrum of plexitonic systems, where combined electron and energy transfers play an important role.
We demonstrate the sensitivity of the molecule-plasmon Fano resonance to junction bias and intra-molecular
interactions (Coulomb repulsion and intra-molecular exciton coupling). The electromagnetic theory is used in
order to derive self-consistent field-induced coupling terms between the molecular and the plasmon excitations.
Our study opens a way to deal with strongly interacting plasmon-exciton systems in nonequilibrium molecular
devices.
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1. INTRODUCTION

Recent progress in nanofabrication techniques and advances in laser technologies open new directions in re-
search of plasmonic materials at nanoscale.1,2 Nanoplasmonics finds its application in optical devices,3–6 photo-
voltaics,7–9 and biology.10–13 In particular, field enhancement by SPs at nanoscale allows the detection of optical
response in current carrying molecular junctions.14 Plasmon coupling to molecular excitations15 is studied
by a field of research named plexcitonics.16 Such couplings yield a possibility for coherent control of molec-
ular systems17,18 and are utilized in molecular photodevices.19–21 Advances in experimental techniques has
caused a surge of theoretical research in the areas of nanoplasmonics and plexcitonics. Usually plasmon ex-
citations are studied utilizing the laws of classical electrodynamics,22–26 while the molecular system is treated
quantum-mechanically.27–32 We used a similar scheme to study transport in molecular junctions driven by
surface plasmons (SP).33,34 Recently, quantum descriptions of plasmonic excitatitons started to appear. For
example, time-dependent density functional theory was employed to simulate plasmon excitations in relatively
small metallic clusters in Refs.35–38 while Ref.39 utilized a quantum master equation to study the effect of
plasmonic excitations on the current.

The observation of Fano resonances40 in plasmonic nanostructures41 gave impetus to a quantum description
of excitations. Such considerations have been done for quantum dot (QD)-metal nanoparticle (MNP) system,
where the MNP was studied classically while oscillations of the QD were treated within a density matrix ap-
proach.42–44 Both influence of plasmon system on semiconductor dipole and vice versa were taken into account,
and nonlinear Fano effects and bistabiluty were discussed within a mean-field approximation. Recently a fully
quantum description of the model was reported in Ref.45 Finally, a mean-field quantum study of the dips in
the absorption spectrum of a molecule between a pair of metallic spheres was presented in Ref.,46 within an
equilibrium Green function formalism. It relies on the factorization of the collective excitations into separated
plasmonic and molecular contributions. In this respect, it is well to bear in mind that the dips discussed in Ref.46
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can arise from both Fano-like interference and hybridization of a molecule dipole and the plasmon resonances.47

This hybridization gives rise to a new quasiparticle - polariton.48–50 Thus, the mean-field type factorization of
the molecular and plasmon excitations is not safe in the case of strong plasmon-exciton coupling. Note that in
junctions with molecules often chemisorbed on metal surfaces the molecule-plasmon interaction is rather strong,
which prohibits perturbative treatment or even usual separation into pure plasmonic and molecular degrees of
freedom. Note also that at short ranges of junction gaps pure classical electrodynamics usually employed for
study of plasmon excitations, becomes inadequate.

Mixed, non separable, excitations of the molecule-plasmon system bring into play fascinating physics related
to the interplay between charge and energy transport through molecular junctions. Especially intriguing is the
effect of strong exciton-plasmon coupling on charge transport (current) through the junction. The formulation of
microscopic conditions (chemical composition, contact to leads, electrodes structure) for similar plasmon induced
coherent optical response in molecular junctions, and its effect on the charge transport is an open challenging
task. Along with the potential for new physical phenomena affecting the controllability of transport through
molecular junctions, comes the challenge to develop appropriate and reliable theoretical tools to study this strong
coupling regime. Mixed coherent excitations of the excitons-plasmons system exclude the validity of Markovian
and perturbative approaches, and necessitate an increase in the junction Hilbert space to account for plasmonic
degrees of freedom. The generalization of the molecular Hilbert space depends on the physics involved. When
a fully quantum mechanical treatment of the plasmonic degrees of freedom becomes essential, a pseudoparticle
(PP) approach may be used, where standard methods of the quantum field theory are applicable to the PP
operators (see below).

Recently, research efforts of Galperin et al. were focused on the on application of the PP non-equilibrium
Green function (NEGF) technique to inelastic transport.51 The technique is a useful tool for description of
open nonequilibrium systems in the language of many-body states (see discussion below). Later we applied the
methodology to formulate a fully quantum desctription of strongly correlated plexcitonic systems.52 Our ap-
proach not only generalizes previous considerations46 bounded to zero-temperature equilibrium (linear response)
conditions, but is technically much more convenient in considerations of molecule-plasmon interactions in junc-
tions, where combined coherent electron/energy transfer mechanisms play an important role in the observed
physics. Note that a similar but approximate description within the standard NEGF formalism would require
a fourth-order perturbation theory to take the effects into account. In other cases, a semi-classical description
of the interaction between the molecule with the SPs and the radiation field is sufficient. Then the relatively
strong coupling to molecular excitations necessitates a self consistent treatment of plasmonic and molecular ex-
citations. In this case excitations of plasmonic and molecular degrees of freedom can be accounted for implicitly,
as time-dependent interactions.

Our goal in this work is to develop a non-Markovian quantum theory of the collective plasmon-molecule
excitations in nanojunctions combined with consistent electrodynamical calculations. In other words, we are going
to extend model based methodology of Ref.52 to develop practical implementations for realistic systems based
on combination of quantum description of the plexcitonic subsystem with classical electrodynamic simulations.
This includes calculation of frequency dependent interactions in a molecular bridge dressed by plasmons due to
the presence of metallic contacts.

2. QUANTUM THEORY OF COLLECTIVE PLASMON-MOLECULE EXCITATIONS
IN NANOJUNCTIONS BASED ON PP NEGF APPROACH

In the case of strong molecule-plasmon interaction, relevant for the case of molecular junctions when molecules
are chemisorbed on at least one of the contacts, separation of molecule and plasmon degrees of freedom is
questionable. Thus description in the basis of the whole system (in this case polariton states) becomes important.
Extension of molecular spectroscopy, conveniently formulated for isolated molecule systems in the language of
molecular states, to molecular junctions also requires a technique which utilizes many-body states as a basis.
Such methodology is invaluable tool also in studies of combined charge and energy transfer at surfaces and
interfaces. The latter is important in particular for basic energy research. One of methodologies is the PP
NEGF (the auxiliary operator representation in the NEGF). Originally the method was developed to describe
strongly correlated systems (e.g. the Kondo effect). However, it can also be applied to a simpler problem of
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describing transport in the molecular states language all the way down to the Kondo temperature, TK . The
PP NEGF has several advantages: 1. The method is conceptually simple; 2. Its practical implementations rely
on a set of controlled approximations (standard diagrammatic perturbation theory techniques can be applied);
3. Already in its simplest implementation, the non-crossing approximation (NCA), the PP NEGF goes beyond
standard quantum master equation approaches by accounting for both non-Markovian effects and hybridization
of molecular states; 4. The method is capable of treating transport in the language of many-body states of the
isolated molecule, exactly accounting for all the on-the-molecule interactions.

The method is based on considerations of spectral decomposition of second quantized operators ĉ†ν in terms of
many-body states |m〉 of the system. Extension of the usual Hilbert space to higher dimensions allows represen-
tation of the many-body states in terms of creation (and annihilitaion) PP operators d̂†m (d̂m), which follow the
usual Fermi or Bose statistics depending on the nature of the state they represent ĉ†ν ≡

∑
m1,m2

ξν
m1m2

d̂†m1
d̂m2

where ξν
m1m2

≡ 〈m1|ĉ†ν |m2〉 is the phase factor of the expansion. The physical subspace of the total PP Hilbert
space is defined by the constraint Q̂ =

∑
m d̂†md̂m = 1. This constraint can be implemented e.g. by introduc-

ing a Lagrange multiplier53,54 or an operator delta function leading to the appearance of a complex chemical
potential.55,56 Note that representation in terms of many-body states |m〉 allows to take into account all the
correlations within the system exactly.

In the extended Hilbert space standard methods of the quantum field theory are applicable to the PP
operators. In particular, single particle Green function on the Keldysh contour

Gm1m2(τ1, τ2) = −i〈Tc d̂m1(τ1) d̂†m2
(τ2)〉 (1)

satisfies the usual Dyson equation G = g+gΣG where g is the bare GF, i.e. the GF in the absence of molecule-
baths couplings, and Σ is the PPs self-energy due to coupling to the baths. Projecting the Dyson equation on
the contour and to the physical subspace results in a set of matrix (in the molecular many-body states basis)
equations for the lesser and retarded PP Green functions (see Appendices in Ref.51 for details)

Gr(E) = [EI−HM −Σr(E)]−1 (2)

G<(E) = Gr(E)Σ<(E)Ga(E) (3)

Here Σr(E) and Σ<(E) are retarded and lesser projections of the self-energy. The solution is self-consistent, since
self-energies in Eqs. (2)-(3) depend on the Green functions. When system of equations (2)-(3) has been solved,
molecular junctions responses to external perturbations (current, optical absorption and emission spectrum,
non-equilibrium Raman signal, etc.) can be calculated utilizing the PP Green functions (see Refs.51,52 for
details).

Model. The Hamiltonian of the junction is

Ĥ = ĤM +
∑

K=L,R,P

(
ĤK + V̂K

)
(4)

Here ĤM is molecular Hamiltonian

ĤM =
D∑

c=1

[ ∑
s=g,e

εsĉ
†
csĉcs +

U

2
N̂c(N̂c − 1)

]
+

D−1∑
c=1

[
−

∑
s=g,e

tsĉ
†
csĉ(c+1)s + J~b̂†cb̂c+1 + H.c.

]
, (5)

ĤK (K = L, R) is Hamiltonian of the contacts, and V̂K describes electron transfer between the molecule and
contacts.

ĤK =
∑

κ∈K

εκĉ†κĉκ (6)

V̂K =
∑

κ∈K
s=g,e

(
Vκs ĉ†κĉcKs + H.c.

)
(7)
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where cK = 1 (D) for K = L (R). In Eqs (5)-(6) ĉ†cs (ĉcs) and ĉ†κ (ĉκ) are creation (annihilation) operators for
electron in the molecular orbital s at the site c of the chain and contact state κ, respectively. b̂†K(b̂K) creates
(destroys) plasmon in a nanoparticle (K = L,R) or excitons at a site c of the molecule (K = c ∈ M , b̂†c ≡ ĉ†ceĉcg).
N̂c ≡

∑
s=g,e ĉ†csĉcs is the total charge of the site c.

The Hamiltonian of the SPs ĤP has the form

ĤP =
∑

n

~ωnâ†nân (8)

where n is the mode number, â†n and ân are the plasmonic creation and annihilation operators, and V̂MP describes
coupling between molecular dipoles Dc and plasmons

V̂P = −
D∑

c=1

Dc ·E(rc) (9)

Here E(rc) is the electric field at a point rc of the position of dipole c ∈ {1, . . . , D}.
The electric field operator of the quantized SPs is57

E(r) = −
∑

n

An∇ϕn(r)(ân + â†n), An =

√
4π~sn

εhs′n
(10)

where the SP eigenmodes ϕn(r) are described by a wave equation (with homogeneous boundary conditions)

∇Θ(r)∇ϕn(r) = sn∇2ϕn(r), (11)

sn is an eigenvalue corresponding to mode n, and Θ(r) is the characteristic function equal to 1 for r in the metal
component and 0 for r in the dielectric. Note that the eigenvalues sn are all real and contained in the range
1 > sn > 0. The eigenmodes are normalized by an integral over the volume V of the system,

∫
V
|∇ϕn(r)|2 = 1.

The physical frequency ωn of the SPs is defined by an equation Re[s(ωn)] = sn, and s′n ≡ Re[ds(ωn)/dωn].

Below we shall treat the SPs also quasiclassically, considering ân as a classical quantity (c-number) an with
time dependence given by an = a0n exp(−iωt), where a0n is a slowly varying amplitude. The number of coherent
SPs per mode is then given by N1 = |a0n|2. This approximation neglects the quantum fluctuations of the SP
amplitudes.

2.1 Preliminary Results

In Ref.52 we applied the PP NEGF methodology to predict form of Fano resonances in the absorption spectrum
of molecular junctions. Our considerations generalizes previously proposed quantum considerations46 to non-
equilibrium realm of a junction and non-zero temperature, and goes beyond linear response in treating the
absorption spectrum. We demonstrated the sensitivity of the molecule-plasmon Fano resonance to junction bias
and intra-molecular interactions, and showed importance of calculating the spectra in nonequilibrium systems
beyond the linear response. This study opens a way to deal with strongly interacting plasmon-exciton systems
in nonequilibrium molecular devices. The goal of our research is to extend the methodology to realistic systems
and combine simulations of plasmon excitations by external electromagnetic field with the quantum response of
the junction.

3. DRESSED INTERACTION

SIn this part we describe a self-consistent procedure of calculating plasmon-induced effective interactions. Results
of these calculations will be utilized in the transport simulations within the PP NEGF approach outlined above.
Consider a system of charged particles (electrons) situated in the vicinity of a plasmonic metal nanosystem.
When an electron undergoes a transition with some frequency ω, this transition is accompanied by local electric
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fields oscillating with the same frequency. These fields excite SP modes with the corresponding frequencies
whose fields overlap in space with the transition fields. The local optical fields of the SPs can excite a resonant
transition of another electron. This process, which in the quantum mechanical language is the electron-electron
interaction by the exchange of an SP quantum, renormalizes (‘dresses’) the direct interaction between these two
charges. As a result, the direct (‘bare’) Coulomb interaction between the electrons, V (r − r′) = 1/(εh |r− r′|),
where εh is the dielectric constant of the embedding medium, is replaced by the dressed interaction W (r, r′; ω).
By definition,58 W (r, r′;ω) is the potential created at a point r by a charge positioned at another point r′ and
oscillating with frequency ω. Therefore, the potential in the presence of an external charge of density ρ(r′) can
be written as (see also59)

Φ(r, ω) =
∫

dr′W (r, r′; ω)ρ(r′) (12)

In the quasistatic approximation, W (r, r′; ω) satisfies the continuity equation58

∇r [ε(r, ω)∇rW (r, r′; ω)] = −4πδ(r− r′) (13)

where dielectric function of the system ε(r, ω) is expressed as ε(r, ω) = εm(ω)Θ(r) + εh[1−Θ(r)] . Here, Θ(r) is
the characteristic function equal to 1 when r belongs to the metal and 0 otherwise, and εm(ω) is the dielectric
function of the uniform metal.

A general solution to this equation can be written in terms of the retarded Green’s function of the system
Gr, which can be presented as a spectral expansion over SP eigenmodes ϕn(r) and the corresponding eigenvalues
sn as

Gr(r, r′;ω) =
∑

n

sn

s(ω)− sn
ϕn(r)ϕn(r′) (14)

where s(ω) = 1/[1− εm(ω)/εh] is the spectral parameter. If the system is in an infinite space (or the boundaries
are remote enough), then the solution to Eq.(13) is simplified to W (r, r′; ω) = V (r − r′) + W ind(r, r′; ω) where
the induced part of the dressed interaction is equal to

W ind(r, r′; ω) ≡ 4π

εh
Gr(r, r′; ω) (15)

Below we consider molecular chains of one (D = 1) and two (D = 2) dimers. The first model was used to extend
consideration of Ref.46 to nonequilibrium and beyond mean-field type of treatment. The second allows us to
consider influence of intramolecular energy exchange on absorption spectrum of the junction. In particular we
examine features of exciton compensation of Coulomb blockade60 in the plasmon spectrum.

3.1 Calculation of Dressed Interactions for the First Model

Consider a point dipole positioned at point r1 and oscillating with frequency ω. The external charge density
ρ1(r′) due to the presence of this dipole can be written as61

ρ1(r′) = −D1 · ∇r′δ(r′ − r1). Both the plasmonic metal nanosystem and the dipole are found in a external
uniform electric field E0 directed along z axis. A uniform field can be thought of as being produced by appropriate
positive and negative charges at infinity.62 For example, if there are two charges ±Q, located at positions z = ∓R,
then in a region near the origin whose dimensions are very small compared to R there is an approximately
constant electric field E0 ' 2Q/R2 parallel to the z axis. In the limit as R,Q → ∞, with Q/R2 constant,
this approximation becomes exact. The external charge density ρ2(r′) due to the presence of this dipole can be
written as

ρ2(r′) = Qδ(r′ − ra)−Qδ(r′ − rb) (16)

where ra,b = R, θa = π, θb = 0. The dipole and the two charges create potential Φ(r, ω) = Φ1(r, ω) + Φ2(r, ω)
where Φ1(r, ω) is the potential created by the dipole

Φ1(r, ω) = −D1

∫
dr′W (r, r′;ω)∇r′δ(r′ − r1) = D1∇r′W (r, r′; ω)|r′=r1 , (17)
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and Φ2(r, ω) is the potential created by two charges ±Q

Φ2(r, ω) = Q[W (r, ra; ω)−W (r, rb;ω)] (18)

and we used Eq.(12). The dipole interaction energy can be written as U = −D1 · E(r1, ω) where E(r1, ω) is
the electric field at a point r1, the position of the dipole. Electric field E(r1, ω) consists of two contributions
E(r1, ω) = E1(r1, ω) + E2(r1, ω) where E1(r1k, ω) ∼ D1 is the electric field at a point r1 induced by the dipole
itself, and E2(rk, ω) is the electric field at a point r1 induced by the two charges. Then U = U1 + U2 where
energy U1 describing non-radiative decay of the dipole into the metal, γm1(ω) ( 1

2 ImU1 = −~γm1(ω) , Ref.61),
and the shift of the transition frequency of the dipole due to interaction with metal (∼ Re U1) is defined by

U1 = −D1 ·E1(r1, ω) (19)

Energy U2 describing the interaction of the dipole with the external field in the vicinity of a plasmonic metal
nanosystem is given by

U2 = −D1 ·E2(r1, ω) (20)

Field E1(r, ω) may be calculated by potential Φ1(r, ω)

E1(r, ω) = −∇rΦ1(r, ω) = −∇rD1∇r′W (r, r′; ω)|r′=r1 (21)

where we used Eq.(17). Field E2(r, ω) may be calculated by potential Φ2(r, ω)

E2(r, ω) = −∇rΦ2(r, ω) = −Q∇r[W (r, ra; ω)−W (r, rb;ω)] (22)

Substituting Eqs.(21) and (22) into Eqs.(19) and (20), respectively, one gets

U1 = (D1 · ∇r)(D1 · ∇r′)W (r, r′; ω)|r=r′=r1 (23)

and
U2 = Q(D1 · ∇r)[W (r, ra; ω)−W (r, rb;ω)]|r=r1 (24)

3.2 Calculation of Dressed Interactions for the Second Model

Consider two point dipoles positioned at points r1 and rD, respectively, and oscillating with frequency ω. The
external charge densities ρ1,D(r′) due to the presence of these dipoles can be written as61 ρ1,D(r′) = −D1,D ·
∇r′δ(r′−r1,D). Both the plasmonic metal nanosystem and the dipoles are found in a external uniform electric field
E0 directed along z axis. A uniform field can be thought of as being produced by appropriate positive and negative
charges at infinity (see above). The external charge density ρ2(r′) due to the presence of this dipole can be written
like before, Eq.(16). The dipoles and the two charges create potential Φ(r, ω) = Φ1(r, ω) + Φ2(r, ω) + ΦD(r, ω)
where Φ1,D(r, ω) are the potentials created by the dipoles

Φ1,D(r, ω) = −D1,D

∫
dr′W (r, r′; ω)∇r′δ(r′ − r1,D) = D1,D∇r′W (r, r′; ω)|r′=r1,D , (25)

and Φ2(r, ω) is the potential created by two charges ±Q, Φ2(r, ω) = Q[W (r, ra; ω) −W (r, rb;ω)], and we used
Eq.(12). The interaction energy of dipoles i = 1, D can be written as Ui = −Di ·E(ri, ω) where the electric field
at a point ri, the position of dipole i, E(ri, ω), consists of three contributions: E(ri, ω) = E1(ri, ω)+E2(ri, ω)+
ED(ri, ω). Here E1(ri, ω) ∼ D1 is the electric field at a point r1 induced by the dipole itself, E2(ri, ω) is the
electric field at a point ri induced by the two charges, and ED(ri, ω) ∼ DD is the electric field at a point r1

induced by the dipole DD. The interaction energy of dipoles 1 and D can be written in a symmetrized form as
U = U1 + UD = U1D + UD1 + U11 + UDD + U2 where

U1D = −1
2
D1 ·ED(r1, ω) (26)

UD1 = −1
2
DD ·E1(rD, ω) (27)
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describe the (”dressed”) dipole-dipole interaction. Energy U11(DD) describing non-radiative decay of dipole 1(D)
into the metal, γm1(D)(ω) (Im U11(DD) = −~γm1(D)(ω), Ref.61) and the shift of the transition frequency of the
dipole due to interaction with metal (Re U11(DD)) is defined by

U11(DD) = −1
2
D1(D) ·E1(D)(r1(D), ω) (28)

Energy U2 describing the interaction of dipole i with the external field in the vicinity of a plasmonic metal
nanosystem is given by

U2 = −
∑

i=1,D

Di ·E2(ri, ω) ≡
∑

i=1,D

U2i (29)

where E2(ri, ω) = −Q∇r[W (r, ra;ω) − W (r, rb; ω)]|r=ri . Field E1,D(r, ω) may be calculated by potential
Φ1,D(r, ω)

E1,D(r, ω) = −∇rΦ1,D(r, ω) = −∇rD1,D∇r′W (r, r′;ω)|r′=r1,D
(30)

where we used Eq.(17). Using Eqs.(26), (27), (28) and (30), we get

U1D =
1
2
(D1 · ∇r)(DD · ∇r′)W (r, r′;ω)|r=r1,r′=rD

≡ 1
2
~J(ω), (31)

UD1 =
1
2
(DD · ∇r)(D1 · ∇r′)W (r, r′;ω)|r=rD,r′=r1 ≡

1
2
~J(ω), (32)

and

Uii =
1
2
(Di · ∇r)(Di · ∇r′)W (r, r′;ω)|r=r′=ri (33)

where i = 1, D and D1 and D2 are considered real quantities. One can see from Eqs.(31) and (32) that U1D =
UD1. This can be expected from the reciprocity theorem,63 according to which the fields of two dipoles D1 and
DD at positions r1 and rD and oscillating with the same frequency ω are related as D1 ·ED(r1, ω) = D2 ·E1(r2, ω)
(see Eqs.(26) and (27)). In that case the sum U1D + UD1, Eqs.(31) and (32), converts to Eq.(5) of Ref.58

The sum U1D +UD1 may be used in the ”excitonic” part of Hamiltonian (5) describing the ”dressed” exciton-
exciton interaction

Hexc−exc = ~[J(ω)b+
1 bD + J∗(ω)b+

Db1] (34)

In case of usual (”undressed”) interaction (J does not depend on frequency) between dipoles, Hamiltonian (34)
also coincides with the usual exciton Hamiltonian written in the Heitler-London approximation.64 Quantities
U1D, UD1 and Uii strongly depend on frequency near plasmonic resonances due to the strong dependence of
dressed interactions W (r, r′;ω)|r=r1,r′=rD and W (r, r′;ω)|r=r′=ri , Eqs.(31), (32) and (33). This results in essen-
tially non-Markovian dynamics of the system under consideration that necessitates corresponding non-Markovian
description (see below).

3.3 Relations between Real and Imaginary Parts of Induced Dipole Interactions
Consider the induced part of the dressed interaction W ind(r, r′; ω) ≡ 4π

εh
Gr(r, r′; ω), Eq.(15). The real and

imaginary parts of the retarded Green’s function Gr(r, r′; ω) obey the dispersion relation,65 according to which

Im W ind(r, r′; ω) =
1
π

P

∫ ∞

−∞

ReW ind(r, r′;ω′)
ω − ω′

dω′, (35)

and

Im U ind
1(2)(ω) =

1
π

P

∫ ∞

−∞

Re U ind
1(2)(ω

′)

ω − ω′
dω′ (36)

for the first model, where the induced parts of U1 and U2 are defined by the same formulas (23) and (24),
respectively, where the dressed interaction W (r, r′;ω) should be substituted by its induced part W ind(r, r′; ω′).
The last formula may be used for checking numerical results. Similar relations may be obtained also for the
second model.
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Figure 1. Geometry for the first model. The dimensions are given in the figure.

3.4 Simulations beyond Quasistatic Approximation

Eqs.(19), (20), (26), (27), (28) are rather general and may be used beyond the quasistatic approximation. Here
we calculate fields E(ri, ω) on the right-hand side of these equations for more realistic geometries of the contacts
like the bowtie antenna,66 a conical metal tip, as one contact, and a metal sphere, as another contact67 etc.,
using the finite-difference time-domain (FDTD) method.68 We used commercially available FDTD Solutions
software by Lumerical.69

Consider the first model: one point dipole (D1 = 10D) positioned between a silver cone and a sphere as shown
in Fig.1. The structure is illuminated by linearly polarized plane wave with the amplitude of electric field of
108V/m. The metal cone and the sphere are described using a Drude dielectric model, εm(ω) = ε0−ω2

p/[ω(ω+iγ)],
with parameters ε0 = 3.57, ωp = 9.1eV , and γ = 0.052eV corresponding to silver. Fig.2 shows the real (describing
the shift of the transition frequency of the dipole due to interaction with metal) and imaginary (describing non-
radiative decay of the dipole into the metal) parts of energy U1, Eq.(19), as functions of frequency. Fig.3 shows
the real and imaginary parts of energy U2 describing the interaction of the dipole with the external field in the
vicinity of a plasmonic metal nanosystem, Eq.(20), as functions of frequency.

Now consider the second model: two point dipoles (D1 = D2 = 10D) positioned between a silver cone and
a sphere as shown in Fig.4. Fig.5 shows the ”dressed” dipole-dipole interaction U1D, Eq.(26), as a function of
frequency.

Figs.6 and 7 show the real (describing the shift of the transition frequency of the dipole due to interaction with
metal) and imaginary (describing non-radiative decay of the dipole into the metal) parts of energies UDD and
U11 , respectively, Eq.(28), as functions of frequency. Fig.8 shows the real and imaginary parts of energy U2

for the second model, Eq.(29), describing the interaction of the dipoles with external field in the vicinity of a
plasmonic metal nanosystem, as functions of frequency.

.
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Figure 2. First model. Real (solid line) and imaginary (dashed line) parts of energy U1 , Eq.(19), as functions of frequency.

Figure 3. First model. Real (solid line) and imaginary (dashed line) parts of energy U2 describing the interaction of the
dipole with the external field in the vicinity of a plasmonic metal nanosystem, Eq.(20), as functions of frequency.
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Figure 5. Second model. ”Dressed” dipole-dipole interaction U1D, Eq.(26), as a function of frequency. Re U1D - solid line,
Im U1D - dashed line.
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Figure 7. Second model. Imaginary (dashed line) and real (solid line) parts of U11, Eq.(28), as functions of frequency.

Proc. of SPIE Vol. 8827  88270C-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 11/17/2013 Terms of Use: http://spiedl.org/terms



2.5

2

-1.5

-2

-2.5

1\1III
11
1 1

1

1

1

.

1

1

1

1

I
1 -II

II,

` 0%1.... - -'
1

1

d1 Ism /
%,

'I

i 1

1 Ì
U

1 1

1 1

1j
11
11

1 2 3 4

ca (eV)

5
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the dipoles with external field in the vicinity of a plasmonic metal nanosystem, as functions of frequency.

4. CONCLUSION AND OUTLOOK

In this work we have developed the fundamentals of a non-Markovian quantum theory of the collective plasmon-
molecule excitations in nanojunctions combined with classical electrodynamic simulations. Our preliminary
results70 and the figures of section 3.4 show that the values of the plasmon dressed exciton interactions and
losses strongly change near plasmonic resonances. Specifically, the maximal value of γmi(ω) is of the same order
of magnitude ∼ 0.1 eV as its spectral width (see Fig.6 of Ref.70). This means essentially non-Markovian dy-
namics of the system that will be studied by the PP NEGF based theory with self-energies given by calculated
above J(ω) and γmi(ω), and U ind

2 that may be expressed by the retarded Green’s function in the quasistatic
approximation (see above). The self-energies can be expressed also by the Green dyadic beyond the quasistatic
approximation.71,72 We also intend in devepoling our FDTD calculations to carry out self-consistent electrody-
namical calculations taking into account the influence of a molecular bridge on the plasmonic system. These
issues will be studied elsewhere.
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