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(Received 13 September 2010; revised manuscript received 18 November 2010; published 23 February 2011)

A numerical method for the calculation of electronic structure of a nanosystem composed of a pseudoisocyanine
(PIC) molecule assembled on a silver nanoparticle is developed. The electronic structure of the silver nanoparticle
containing 125 atoms is calculated within the local density version of the density functional method. A model of
an Ag atom embedded in the center of a spherical jellium cluster is used. The host electron Green’s function is
calculated by means of the spherically symmetric expansion. The principal theoretical tool is the scattering theory
using the Green’s function method. The molecule-silver nanosystem interaction is studied using the approach
similar to that of the Anderson model for transition metal impurities in solids. Localized levels are shown to split
off from the top of the band of the Ag nanoparticle. The electronic structure calculations yield information on
the character of chemical bonding in the PIC molecule-silver particle nanosystem.
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I. INTRODUCTION

Organic-inorganic nanohybrid materials that utilize noble
metals (silver or gold), functionalized with organic or biolog-
ical constituents can produce unique physical and chemical
properties that otherwise are not possible in single component
materials.1 These materials have given rise to a growing
interest in theoretical methods that can calculate the electronic
structure and transport properties of nanoscale devices.2–4

A major problem with these nanostructures is to optically
control molecular self-organization on metallic surface. J-
aggregates of cyanine dyes make a fascinating topic of research
due to their outstanding optical properties.5 Spectroscopic
peculiarities are the result of exceptionally strong electronic
interactions between the transition dipole moments of the dyes
that give rise to extended exciton states after photo excitation.4

The excitonic optical spectrum depends on the details of the
structural and electronic arrangement of the dye molecule.6

The adsorption of dyes to nanoparticles of noble metals
presents a special interest.7 The study of the interaction
of an adsorbed dye, in both its ground and excited states,
with the energy states of the conduction band of metal is
also of interest and may rely on theoretical calculations of
the energy electronic structure of the nanosystem made of
pseudoisocyanine (PIC) assembled on a silver nanoparticle.
Moreover, the nature of coupling between excitonic molecular
J-aggregates and a metallic nanoparticle is still not completely
understood since, to the best of our knowledge, no attempts
have been made to calculate the electronic structure of
Ag + PIC nanosystems from the “first principles.” In addition,
a major problem of molecular engineering is to control
molecular self-organization.8 This process is governed by
the formation of chemical bonds (e.g., covalent or hydrogen
bonds). The assembly process on nanoparticles is also affected
by the molecule-substrate interactions. Therefore, understand-
ing bonding between the molecules and nanoparticle is crucial
to be able to choose appropriately the molecular and substrate

materials for a nanosystem design. On the theoretical side,
the new computational techniques allow one to predict the
preferential geometry of the nanostructure arrangements as
well as the strength and chemical bonds involved directly from
the fundamental quantum mechanical laws.

We demonstrate how ab initio calculations allow one to
explain the shape of the observed superstructures, to elucidate
the role of electronic structure and the molecule-silver particle
bonding and to reveal details of the nanosystems not yet
experimentally accessible.

Quantum electronic-structure calculations allow us to un-
derstand the macroscopic properties of complex polyatomic
systems (specifically, the organic PIC molecule assembled on a
silver nanoparticle) in terms of the microscopic states available
to the electrons described by their wave functions and the
nanosystem electron density ρnano(r). For these larger systems
it is frequently of a greater interest to know the change in the
electronic-structure associated with the changes in the Kohn-
Sham9 effective potential Veff(r) and the electron density. Our
work develops a theoretical technique that makes the direct
calculation of such changes possible. This technique is based
on the self-consistent Green’s function method10 and standard
density-functional theory (DFT) in combination with the
local-density approximation (LDA),11 which maps the many-
electron interaction problem onto a self-consistent treatment of
noninteracting quasiparticles moving in an effective potential

Veff(r) = Vext(r) + 2
∫

ρnano(r′)
|r − r′| dr′ + Vxc(r), (1)

where Vext(r) is the external potential and Vxc(r) is the local
exchange-correlation potential.s

II. FORMULATION OF THE PROBLEM

We present in this paper results of numerical calculations
of the electronic structure of a nanosystem: PIC molecule +
small Ag particle whose electronic structure is described by
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the Hamiltonian

H = Hjellium + H4d + HPIC + H
p

PIC−Ag + Hr
PIC−Ag. (2)

The first term stands for the spherical jellium cluster Hamil-
tonian made of 5s-valence electrons of an Ag atom. The next
term in the Hamiltonian (2) describes the subsystem of Ag
4d-electrons embedded in the spherical jellium cluster. HPIC

stands for the PIC molecule Hamiltonian. The last two terms
of the Hamiltonian (2) describe the resonant (r) (due to the
presence of the 4d state of Ag atoms) and potential (p) (due to
the Ag 5s states) scattering. This distinction between the two
types of scatterring by atomic potential is discussed in detail
in Ref. 12 (see also Ref. 10).

The method is based on the separation of the Hamiltonian
(2) into the two parts

H = H 0
LDA + �H. (3)

Here H 0
LDA = Hjellium + H4d is the Hamiltonian of the ref-

erence system, which includes an effective single-particle
LDA potential V 0

LDA(r). �H = HPIC + H
p

PIC−Ag + Hr
PIC−Ag

is the Hamiltonian of the “difference” system described by
the potential �V (r), which is the difference between the
self-consistent Kohn-Sham (1) effective potential Veff(r) and
V 0

LDA(r).
Four different computation schemes are used, each of

which provides mutually complementary information about
the electronic spectra of the complex nanosystem. The first
one is the spherical jellium cluster model with the central
4d Ag atom embedded in the center of a silver nanoparticle.13

The second method is based on the Green’s function approach.
Then the physical effect shows up exclusively in variations of
the Kohn-Sham effective potential Veff(r) (Ref. 9) and of the
nanosystem electron density ρnano(r). In this approach, we
follow a two-step concept and split the entire problem into
two parts where each of them is far less complicated than
the original one.14,15 The whole nanosystem is decomposed
into the reference system characterized by the ground-state
electron density ρ0

LDA(r) and the difference system with the
electron density

�ρ(r) = ρnano(r) − ρ0
LDA(r), (4)

which is the difference between the self-consistent electron
density ρnano(r) of the nanosystem and the ground-state
electron density ρ0

LDA(r) corresponding to the Hamiltonian

H 0
LDA = −∇2 + V 0

LDA(r) (5)

(atomic Rydberg units are used). Here H 0
LDA = Hjellium + H4d .

The complete set of electronic states of the reference system
is represented by the reference Green’s operator

G0(z) = (
z − H 0

LDA

)−1
, (6)

depending on the complex variable z = ε + iη(η � 0). The
calculation of G0(z) along a properly chosen contour in the
complex energy plane defines step one of our approach.
As the second step, the Green’s operator G(z) of the

nanocluster-assembled system (and the charge density related
to it) is determined by solving the Dyson equation

G(z) = G0(z) + G0(z)�V G(z), (7)

in a self-consistent way. A detailed description of our approach
to solving Eq. (7) is presented in the Appendix.

The third semi-empirical method Zerner’s intermediate
neglect of differential overlap (ZINDO/S)16 was used for
the calculation of the electronic structure of a neutral PIC
molecule. The fourth DFT/B3LYP/6-31G17 method was ap-
plied to the equilibrium geometry calculation of PIC molecule
by the standard DFT method.

We would also like to indicate here the limitations of
our approach to the treatment of the Ag + PIC nanosystem
based on the spherical jellium model for the Ag nanoparticle.
The previous structural research18 using the method of the
molecular dynamics shows that very diverse nonspherical
geometries of the nanoparticle are possible. The relaxation of
the PIC molecule and nanoparticle reconstruction in response
to the PIC molecule are also not taken into account. Including
all the processes into the calculation scheme can strongly
complicate the procedure and we leave it for our future
research.

III. CALCULATION OF THE ELECTRONIC STRUCTURE
OF AG NANOPARTICLE

First, we consider the electronic structure of the silver
nanoparticle. Cluster calculations are traditionally employed
in studies of surface and bulk materials. They help us to
understand how the physical properties evolve from a free
atom to a finite-size system. In recent years, microclusters on
the basis of Ag atoms attracted a lot of interest due to the
growing technological significance of nanosystems including
Ag and Au nanoparticles.19,20 A variety of theoretical models
have been proposed for the calculations of cluster electronic
structure. However, the most precise models allow one to
obtain their electronic structure with a small number of atoms
only. For large atomic aggregations, these methods cannot be
applied successfully, and simpler models are employed in this
case. Thus, for the study of electronic properties of sp-bonded
metal clusters, a jellium model is used.21 But the models
based on the jellium approximation are not directly suitable
for the investigations of metal clusters containing atoms with
localized d shells. As a consequence, a model of an Ag atom
embedded in the center of a spherical jellium cluster is applied
for a description of a small Ag metallic nanoparticle containing
localized 4d electrons. The DFT approach in the LDA was
used in the computation.13,22 Each atom of the nanoparticle
is mimicked by a single atom embedded in the center of a
jellium sphere with the rM radius, determined according to the
position of the real atom with respect to the cluster surface. rM

is then the shortcut between the atom and the cluster surface.
The electronic structure of an Ag atom embedded in the

jellium sphere is obtained within the DFT framework from a
self-consistent solution of the Kohn-Sham equations (in atomic
Rydberg units)9,22

[ − ∇2 + V 0
LDA(r)

]
ψnl(r) = εnlψnl(r), (8)
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where

V 0
LDA(r) = −2Z0

r
+ 2

∫
ρ−(r′) − ρ+(r′)

|r − r′| dr′ + Vxc(r), (9)

with the Vosko et al. form23 of the local exchange-correlation
potential Vxc(r). Here εnl and ψnl are single electron energies
and wave functions, respectively; Z0 is the nuclear charge of
the Ag atom. The electron density of the jellium cluster with
an Ag atom is

ρ−(r) =
∑
nl

fnl|ψnl(r)|2, (10)

where the coefficients fnl are the occupation numbers of
the states with quantum numbers n,l, and the summation is
over all states of the atom-in-jellium nanoparticle. The radial
distribution of the positive jellium background is given by

ρ+(r) = [
3Nval(Nat − 1)/4πr3

M

]
�(rM − r), (11)

where �(x) is the unit step function, Nat is the number of
atoms in the cluster (including the specific Ag atom), Nval is
the number of valence electrons in the Ag atom. The cluster
radius rM is found from the expression

rM = N
1/3
at rc, (12)

where rc is the Wigner-Seitz radius. We have used here
rc = 3.02356 a.u., Nat = 125, and Nval = 1. The numerical
integration of the Kohn-Sham equation for the Ag atom
in a jellium sphere is carried out by means of the Milne
method.24 The free Ag atom eigenenergies εnl and wave
functions ψnl are calculated by means of the semirelativistic
RATOM program.25 The self-consistency procedure for the
potential V 0

LDA(r) is carried out in a mixed fashion. The first
two iterations use the arithmetic average scheme, which later
on is effectively substituted by the Aitken scheme.26

The electronic ground-state configurations of the jellium
sphere containing the central Ag atom were determined in
the following way. The rules for the energy level occupation
separately in jellium and in a free atom are well known. Clearly,
insertion of an atom into the jellium sphere center does not
change the atom and jellium field symmetry, and consequently,
the symmetry of their electronic states is not changed either.
One can suppose therefore that the number of electron states
with the same symmetry in the jellium sphere with the central
atom is equal to the sum of such symmetry states of the jellium
and the atom. The sequence of energy levels of atom-in-jellium
is obtained by solving the self-consistent equations (8)–(10)
for the different angular l and principal n quantum numbers.
The energy levels are occupied in accordance with the Pauli
principle. The highest levels can be partially occupied.

We have computed the total energy of the jellium spheres
with the Ag atom in the center for various occupation numbers
of the upper levels. For the calculation of the total energy we
employed the equation

Etot =
occ∑
j

εj +
∫

ρ−
out(r) ×

[
εout

xc (r) − V in
xc (r)

+
∫

ρ−
out(r

′) − 2ρ−
in (r′)

|r − r′| dr′
]
dr. (13)

Here the indices in and out indicate the input and output data
of the latest self-consistency iteration, respectively; εout

xc (r) is
the exchange-correlation energy density of a homogeneous
electron gas with the density ρ−

out(r) parameterized according
to Vosko et al.23

The calculations have shown that the spherical jellium
nanoparticle with the central 4d Ag atom has the following
energy spectrum. The eight lowest energy levels are iden-
tical to those of the 4d atom core; the rest of them are
similar to the states in a spherical potential well. In this
paper the quantity n = nn + 1 has been considered as the
principal quantum number; nn is the number of nodes of
the wave function of the corresponding energy level. Thus,
the electronic configuration of the central Ag atom in the
jellium sphere is 1s22s21p63s22p61d104s23p6. The electronic
states of the 125 atoms are arranged in the following order:
2d101f 141g181h222f 141i261j 30. The self-consistent potential
V 0

LDA(r) [Eq.(9)] with the electronic levels for an Ag atom
embedded in a jellium sphere is presented in Fig. 1.

An important characteristic of the Ag nanoparticles is their
ionization potential (IP). It has been shown in Ref. 27 that a
strong correlation exists between the chemisorption reactivity
of a small transition metal cluster and its ionization threshold.
Here we report the IP’s for the Ag nanoparticles contain up
to 160 atoms. In these calculations we simulate atoms of
an Ag nanoparticle by Ag atoms embedded in the center of
jellium spheres of various sizes. The jellium sphere radius rM

is defined by the shortcut between the atom and the cluster
surface.

The IP of an atom-in-jellium was obtained using the ground-
state theory (LDA method) by self-consistent calculation
according to Eq. (13) and subtraction of the total energies of
neutral and ionic ground states. It was found that the ionization
thresholds of atoms of the Ag nanoparticles differ and depend
on the position of the atoms with respect to the cluster surface.
The lowest atomic ionization threshold has been chosen as
the IP of the Ag nanoparticle. For the neutral Ag atom we
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FIG. 1. (Color online) A self-consistent Ag-nanoparticle poten-
tial of the jellium sphere containing the central Ag atom (the radial
distribution, in atomic units). The states of subshell 2d10 are split into
4d5/2 and 4d3/2 levels due to the spin-orbit interaction.
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obtained IPtheor
atom = 7.96 eV and IPexp

atom = 7.576 eV. Instead of
calculating the IP’s from the data as the total energy differences
between the neutral cluster and ions, we use an alternative
method based on the Slater transition state approach28 and
Janak theorem29 for the DFT, which allows us to calculate the
excitation energy of adding (removing) an electron to (from)
the system from (to) the infinity. This scheme can be derived
in the following way. The total energy Etot difference between
the final and initial states for the process of electron addition
to the one-electron state j can be calculated as an integral
of total energy derivative with respect to the occupancy qj .
This derivative, εj = ∂E/∂qj , corresponds to the Kohn-Sham
eigenvalue

E(qj = 1) − E(qj = 0) =
∫ 1

0
dqj εj (qj ) � εj (0.5). (14)

Equation (14) becomes exact if the LDA eigenvalue εj (qj ) is
a linear function of the occupancy, which is usually true to
within a good accuracy.

The vertical (or adiabatic) ionization potentials30 of the
clusters are evaluated from the highest occupied molecular
orbital (HOMO) energy of the neutral clusters. The calculated
IP of an Ag125 nanoparticle is IPtheor = 4.73 eV. When
the number of atoms in the nanoparticle increases the IP
converges to the work function 
 of the corresponding metallic
half-space. The work function of 4.46 eV was determined
experimentally for Ag(111) (Ref. 31). Our calculation yields
the value of 4.73 eV for IPtheor

125 . The LDA HOMO-lowest
unoccupied molecular orbital (LUMO) gap between occupied
(εi20 ) and unoccupied (εg18 ) orbitals for the Ag nanoparticle is
�HOMO−LUMO = ε1i20 − ε2g18 = 1.58 eV.

It is well known that Ag aggregates are formed in a col-
loidal aqueous solution of NaCl (Ref. 7). Therefore studying
electronic properties of small metallic particles in different
dielectric matrices32–34 presents a great scientific and practical
interest as well as those of free Ag nanoparticles. When a
metallic particle is placed in a dielectric medium, polarization
changes ρpol(r) are induced on the particle surface, which
produce the potential

Vpol(r) = 2
∫

ρpol(r′)
|r − r′|dr′. (15)

In Ref. 33, we have shown that the ground state of a metal
nanoparticle embedded in a dielectric matrix can be described
by the self-consistent Kohn-Sham equations with the effective
potential

V ε(r) = V (r) + Vpol(r), (16)

where V (r) has the same form as the effective potential for the
nanoparticle in a vacuum. Averaging Vpol(r) and substituting
the result into Eq. (16) yields

V ε(r) =
{

V (r) + 1−ε
ε

V (rM ) r � rM,

V (r)/ε r � rM.

The calculations for the Ag125 nanoparticle embedded in a
dielectric medium with the relative permeability ε = 61.1
(50% water solution of NaCl) have shown that with the
increasing dielectric permeability ε the potential profile near
the jellium edge becomes steeper. The bottom of the potential

well Vbottom and the single electron energy levels εi rise
when the cluster is embedded in a dielectric matrix. It
should be emphasized that the oscillations33 in the electronic
density of jellium cluster in vacuum are suppressed in
the dielectric media. The amount of the electronic charge
beyond the jellium edge (electronic “spill out”) increases
with the increasing ε. This is caused by a positive shift
of the electronic eigenenergies of Ag nanoparticles in a
dielectric medium and an extension of the corresponding wave
functions.

The static dipole polarizability35 is also well known to be
intimately related to the electronic structure of a nanocluster.33

We discuss here the photoresponse of an isolated Ag nanopar-
ticle to an external electromagnetic field in terms of the
frequency-dependent polarizability36

α(ω) = −8π

3

∫ ∞

0
dr ′r ′3δρ(r ′,ω), (17)

where δρ(r ′,ω) is the change in the charge density. The
calculation of the static dipole polarizability α(ω = 0) for an
Ag nanoparticle is carried out within the time-dependent local-
density approximation (TDLDA)35 using the self-consistent
solution of the set of equations

δρ(r,ω) =
∫

χ0(r,r′; ω)δV (r′)dr′, (18)

δV (r,ω) = Vext(r,ω) + Vind(r,ω), (19)

and

Vind(r,ω) = 2
∫

δρ(r′,ω)

|r − r′| dr′ + ∂Vxc(r)

∂ρ(r)
δρ(r,ω). (20)

Here Vext(r,ω) and Vind(r,ω) are the external field with
the frequency ω and the induced field, respectively;
χ0(r,r′; ω) is the susceptibility function in the independent-
particle approximation. For rM = 15.1178 a.u. (Ag125 cluster)
α(ω = 0) = 4.82Å

3
/atom. The bulk atomic polarizability is

4.33 Å3/atom.37

IV. RESULTS AND DISCUSSION

We present here a theoretical approach to the organic
molecules interacting with silver in terms of numerically
solvable DFT models. In practice, these models apply to
nanosystems (PIC molecule on an Ag particle) and provide
an understanding of doping silver nanoparticles by PIC adsor-
bates. The chemical structure of PIC molecule is exhibited in
Fig. 2. The density-functional calculations are performed to
determine the equilibrium structure of these PIC molecules by
the DFT/B3LYP/6-31G-method.17 The molecule geometries
are optimized using the B3LYP-exchange-correlation energy
functional and potential. The minimum basis set is capable of
producing reasonable results is 6-31G. Since the geometry of
PIC within the Ag + PIC nanosystem is undoubtedly disturbed
as compared to the PIC monomer and possibly resembles a
PIC aggregate, these calculations were performed as follows.
First, the equilibrium geometry of the tetramer (PIC : Cl)4

was found. After that, the averaged geometry of the monomer
(PIC : Cl) was obtained by averaging over four molecules
of the tetramer. The search of the equilibrium geometry of
tetramer was performed by standard density functional method
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FIG. 2. (Color online) Configuration of the PIC molecule cal-
culated by DFT/B3LYP/6-31G method: H (black) stand for the
hydrogen atoms; C (red) stands for the carbon atoms; N (yellow)
stands for the nitrogen atoms; F (blue) stands for the fluorine atom.

DFT/B3LYP/6-31G using the GAMESS program package.17

The electronic structure of a neutral PIC molecule was
calculated by the ZINDO/S method.16

It is assumed that the PIC molecule is adsorbed on the
spherical surface of an Ag nanoparticle, setting down over the
sphere so that its central carbon atom (the molecule center of
gravity) is positioned in the point (2.223,0.680,0.705) Å, with
respect to the center of the Ag nanoparticle. In the beginning
we present the results of calculation of the electronic structure
of an Ag125 nanoparticle obtained by the model of an atom in
the center of a spherical jellium sphere and DFT in the LDA.
Figure 1 presents the energy level structure of the Ag jellium
nanoparticle with 134 valence electrons (the Ag atom core
electrons orbitals lie below ε3p3/2 = −4.27 Ry).

Figure 3 shows the Ag bound states by the red line.
The peak heights are proportional to the degeneracy. The
continuum density of states �n(ε) is given for the positive
energies corresponding to the delocalized (unoccupied) states
by Eq. (A18). Figure 3 exhibits the contribution of poten-
tial scattering [Eq. (A17)] to the formation of Ag related
bound states (ε2g = −1.34 eV) and fall in the broad range
�HOMO-LUMO. This level is obtained from Eq. (A17) with M̃
substituted for Q−1 [see Eq. (A11)]. The states 2d10(4d3/2 +
4d5/2)1f 141g181h222f 141i261j 30 in the occupied part of the
spectrum are the Ag resonances in the band (red line in Fig. 3)
and lie in the interval (−10, − 5) eV. The resonant ε2g level
[see Fig. 3] arises at the energy 0.24 eV below the LUMO
level. Both the Ag resonances and ε2g states are found in the
solution of Eq. (A17) with the full self-energy M̃(z).
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FIG. 3. (Color online) Density of states and Kohn-Sham level
structure for nanosystem Ag + PIC.

The calculation of Ag125 particle embedded in a dielectric
medium with relative dielectric permeability ε = 61.1 (50%
water solution of NaCl) has shown that the electronic “spill
out” increases in the dielectric medium as compared to vacuum
and is equal for this case to 21.6 electrons.

The 26.14 eV width band of the Ag + PIC nanostructure
is formed by strongly hybridized C(s,p) (blue line), N(s,p)
(yellow line), H(s) (black line), and Ag (red line) states. The
unoccupied states lie above εLUMO = −1.58 eV. Furthermore,
we find the acceptor-like ε2g states almost entirely localized in
the adsorbate PIC molecule and hybridized with the hydrogen
1s levels. As discussed in Ref. 38, the interaction between the
adsorbate and the transition metal surface can be described as
a two-state problem (adsorbate state and the d band) leading to
formation of bonding and antibonding states. Thus, an upshift
of the d states should increase the adsorbate-metal interaction
since it would lead to the formation of an antibonding orbital
closer to the Fermi level. Strong features appearing between
−5 and −10 eV represent the formation of a bonding orbital
through the interaction of hydrogen 1s state with the metal d

band, and this formation is typical for all transition metals. The
bonding Ag 2d-1s states lie around −9 eV. The antibonding
orbital lies around εLUMO level and is hybridized with the
resonance ε2g states.

We will interpret the density of states (see Fig. 3) of
the nanosystem Ag + PIC species based on their bonding
properties obtained from the Green’s function calculations and
simple molecular orbital considerations. For a more detailed
study of the chemical bonding in these nanosystems we have
calculated the electron-density change �ρ(r) (see Fig. 4).

The electronic structure obtained for the Ag + PIC
nanosystem has a terminal Ag–C bond. Similarly to all
transition metals39 the C–C bond is known to be much
stronger than the Ag–C bond. Thus, it is not energetically
favorable for Ag to enter the C chain since this will break
the stronger C–C bonds and form weaker Ag–C bonds.
The Green’s function calculations indicate that the excited
Ag atoms in the nanosystem are involved in the chemical
bonding. Simple molecular orbital considerations suggest that
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FIG. 4. (Color online) Difference electron-density charge for PIC
molecule adsorbed on an Ag nanoparticle. The contours are in units
of 10−5e/�A.

the C atom directly bonded to an Ag atom must be in an
sp-hybridized state to more effectively interact with the Ag
particle orbitals. And the Ag 2d orbitals can interact with
the other p orbitals of the C atoms to form additional bonds.
Thus, our calculations show that the Ag(d,s)–C(s,p) bond is
of a considerable importance for understanding the nature of
chemical bonding of the Ag + PIC nanosystem.

As shown in Fig. 3, all Ag states are situated between
the C states. From the �n(ε) distribution as well as from
its partial components �ns(ε), �np(ε), and �nd (ε), one
can conclude, that the d-s,p resonance is observed in the
(Ag + PIC) nanosystem, was revealed in the compounds of
metals, containing the filled d shells, with nonmetals.40 In
this case,the Ag 5s-type states (1f 141g181h222f 141i261j 30)
form σ bonding and σ ∗ antibonding orbitals with the C sp

hybridized orbitals. At the same time, the 2dπ orbitals in Ag
can interact with the C–C π orbitals. The resonance of the
HOMO ε2g with the hydrogen level (σ ∗ symmetry) is the
principle interaction in the Ag5s–H1s bond. This bond plays
the crucial part in determining the chemisorption reactivity.41

There are two factors that affect this orbital interaction,
first the HOMO energy and second, and more importantly,
the symmetry of the HOMO. It follows from Ref. 41 that the
d-symmetry HOMO would lead to a high reactivity. However,
the ε2g HOMO is mainly of 5s character and is not symmetry
matched with the H σ ∗ orbital, hence it results in an extremely
low reactivity. Thus, the s-type HOMO of the Ag + PIC
nanosystem effectively provides a shielding effect to protect
the nanosystem from being attacked by the hydrogen atoms.

Figure 4 shows the charge density difference of an Ag +
PIC nanosystem

�ρ(r) = ρAg+PIC(r) − ρAg(r) −
∑

a

ρatom
a .

Here, ρAg+PIC(r) is the self-consistent electron density of the
Ag + PIC nanosystem; ρatom

a is the electron density of the
free atoms in the PIC molecule; ρAg(r) is the density in
reference system. The Ag sphere with radius 15.12 a.u. is also
schematically shown. The electron-density charge is close to

z = 1.33 a.u. Figure 4 reveals that the electron density change
�ρ(r) is strongly localized. We see also that the adsorbed PIC
molecule causes an accumulation of the reference charge on
the Ag metal side due to the three carbon atoms with the
coordinates (14.21, −13.71,1.33) a.u., (12.13,−12.03,0.99)
a.u., (13.93,−16.37,1.31) a.u. and one hydrogen atom with the
coordinates (15.25,−17.37,2.26) a.u. Based on the chemical
bonding model of the carbon and hydrogen valences, the
chemical structure of interaction between the Ag and (C,H)
atoms of the PIC molecule has the form

H–Ag–C = C–C–H.

The major part of the electron density in C=C and C=N
bonds is localized at the bottom of the band and has the
sp and sp2 type covalence of the chemical bonding. At the
same time, the upper part of the occupied states contain
mainly the bonding electrons which are concentrated in Ag–H
and Ag–C bonds and have (d,s)–(s,p) resonance type of
bonding with the maximum displacement toward the Ag
nanoparticle.

V. CONCLUDING REMARKS

Carrying out a numerical solution of the Dyson equation
(A11) in the Kohn-Sham density-functional methodology we
determined the electronic and chemical structure of Ag + PIC
nanosystems. The calculation of the Ag125 particle embedded
in a dielectric medium with the relative permeability ε = 61.1
(50% water solution of NaCl) shows that the amount of the
electronic charge beyond the jellium edge (electronic “spill
out”) increases in the dielectric medium as compared to the
vacuum and equals in this case 21.6 electrons. The resonant
ε2g level (see Fig. 3) arises at the energy 0.24 eV under the
LUMO level. Both the Ag resonances and ε2g states are found
as solutions of Eq. (A17) with the full self-energy M̃(z). The
electronic structure obtained for the Ag + PIC nanosystem has
a terminal Ag–C bond.

Three C atoms and one H atom take part in the ad-
sorption of the PIC molecule on the Ag nanoparticle and
accumulation �ρ of charge takes place. The hybridized
Ag–H and Ag–C bonds are of the (d,s)-(s,p) resonance
type with the maximal displacement of charge toward the Ag
nanoparticle.
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APPENDIX: GREEN’S FUNCTION TECHNIQUE TO
CALCULATE THE ELECTRONIC PROPERTIES OF
ORGANIC ADMOLECULE ON METAL CLUSTER

Our approach is based on the general concept formulated
in Ref. 42. It makes it possible to calculate the electronic
structure of metallic substrates and to study the behavior of
a compact cluster adsorbed on a nanoparticle. The principal
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theoretical tool is the scattering theory formalism, which
considers perturbation of a metal substrate single electron
potential by a spatially compact cluster, which is itself compact
by virtue of screening. It can therefore be treated as a localized
scattering potential for Ag electrons of the substrate. To
obtain the electronic structure of the admolecule on an Ag
nanoparticle a “matrix” scattering approach is adopted. Our
objective is to construct the Green’s function matrix Gμν(z)
for the perturbed system (e.g., silver nanoparticle with organic
PIC molecule).

The theoretical analysis providing us with a link between
the nanosystem and the related simple systems (Ag nanopar-
ticle and PIC molecule) is based on the Dyson equation (7).
As is well known, the original problem of solving a linear
differential equation can be mapped onto the solution of a
matrix equation of an infinite dimension by expanding the
wave functions in terms of a linear combination of properly
chosen orthonormal functions, for example, the atomic orbitals
(LCAO’s) that are used here. In most cases of the LCAO
cluster calculations Slater-type orbitals strongly facilitate the
numerical calculation of overlap integrals.

In practical calculations we construct the Green’s function
matrix Gμν(z) (6) using a finite set of Nb basis functions χμ(r).
The basis set only needs to cover the real space, within which
�ρ(r) is localized. We will denote this region as box A of
volume �A. In the present implementation of our method the
χnlm(r) are the Kohn-Sham orbitals

χnlm(r) = ψnl(|r − Rα|)Ylm(θr−Rα
,φr−Rα

), (A1)

placed at appropriately chosen positions Rα in the PIC
assembled molecule. Here we choose the basis of atomic
functions so that μ ≡ nml. ψnlm(r) are the Kohn-Sham radial
wave functions obtained with the help of the potential �V (r),
which, in turn, is calculated by means of the functions ψnlm(r).
The self-consistency iterations are repeated until a desired
convergence is achieved. Ylm(θ,φ) are the spherical harmonics
centered at Rα .

Writing the Dyson equation

G(z) = G0(z) + �G(z), (A2)

we see that only the difference operator �G(z) [and the
difference electron charge density �ρ(r) related to it] need
to be be actually calculated. This difference operator has the
form

�G(z) = [(I − G̃
0
(z) · �V · (L−1)†)−1 − I]G̃

0
(z),

where

�Vμν =
∫

�A

χ∗
μ(r)�V [ρ(r)]χν(r)dr,

and I is a unit matrix. Here the factor L−1 ensues from the
assumption that the basis set χμ(r) was used in the Cholesky
decomposition S = L · L† for the overlap matrix

Sμν =
∫

�A

χ∗
μ(r)χν(r)dr,

to obtain the orthonormal basis.

The density variation is calculated using the equation

�ρ(r) = Im
Nb∑

μ=1

Nb∑
ν=1

�̃ρμνχμ(r)χ∗
ν (r), (A3)

where

G̃
0
μν(z) = ((L−1)†G0(z)L−1)μν,

�̃ρμν = ((L−1)†�ρL−1)μν,

and

�ρ = − 1

π

∫ εHOMO

εb

�G(z)dz. (A4)

The lower integration limit εb is chosen in such a way as to
include all the relevant Ag and molecule states, εHOMO is the
HOMO energy. To compute the integral (A4), we introduce a
contour C in the complex plane z enclosing all the poles of
the Green’s function up to the HOMO’s energy in the charge
density integration.

Our computational scheme is based on the spherically
symmetric Ag metallic nanoparticle Green’s function

G0(r,r′; ε) =
∑
lm

Ylm(θ,φ)G0
l (r,r ′; ε)Y ∗

lm(θ ′,φ′), (A5)

decomposed in terms of the spherical harmonics.35 Here

G0
l (r,r ′; ε) = Rl(r<,ε)Nl(r>,ε)

r2Wl(ε)
, (A6)

with r< = min(r,r
′
),r> = max(r,r

′
). Rl(r<,ε) and Nl(r>,ε)

are the regular and nonregular solutions of the radial Kohn-
Sham equations with the potential V 0(r) and energy ε. Wl(ε)
is the Wronskian of the functions Rl and Nl . We obtain Rl

and Nl by integrating the radial Kohn-Sham equation, using
the asymptotic behavior of these functions at the origin and
infinity. As is generally known, the regular solution Rl behaves
asymptotically as rl+1 at r → 0. When r → ∞, the nonregular
solution Nl must be an outgoing wave for the continuum-
energy region(ε > 0), and it exponentially decreases for the
bound-state region (ε < 0).

The Green’s function of the nanoparticle is projected onto
the localized basis

G0
μν(ε) =

∑
lm

〈μ|�A|Rl(r<,ε)〉〈Nl(r>,ε)|�A|ν〉/Wl(ε).

(A7)

The following notations have been used above

〈μ|�A|Rl(r<,ε)〉 =
∫

�A

χ∗
μ(r − Rα)Rl(r<,ε)dr,

〈Nl(r>,ε)|�A|ν〉 = 〈ν|�A|Nl(r>,ε)〉∗,
〈ν|�A|Nl(r>,ε)〉 =

∫
�A

χ∗
ν (r − Rβ)Nl(r>,ε)dr,

�A(r) =
{

1, r ∈ �A − volume of the box region A

0, otherwise
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Here we use the single-center method to compute all
integrals in the Slater-type orbital basis.43 The Slater orbital
centered in a point, defined by its location vector Rα , is usually

χnlm(r) = Nnl|r − Rα|n−l−1 exp(−ζ |r − Rα|)
×Ylm(θr−Rα

,φr−Rα
). (A8)

The radial part of the Slater orbital is expanded over the
Barnett-Coulson/Löwdin function (BCLF)44

|r − Rα|n−l−1 exp(−ζ |r − Rα|)
= 1√

Rαr

∑
λ

(2λ + 1)An−l
λ+1/2(ζ,Rα,r)Pλ

(
Rα · r
Rαr

)
,

(A9)

where Pn(z) are the Legendre polynomials of degree n and
An−l

λ+1/2(ζ,Rα,r) are the BCLF’s defined by the recursion

An
λ+1/2(ζ,Rα,r) = − ∂

∂ζ
An−l

λ+1/2(ζ,Rα,r),

with

A0
λ+1/2(ζ,Rα,r) = Iλ+1/2(ζρ<)Kλ+1/2(ζρ>),

where Iλ+1/2(z) and Kλ+1/2(z) are the modified Bessel func-
tions of the first and second kinds; the variables ρ< and ρ>

stand for the min(Rα,r) and max(Rα,r), respectively. In the
present implementation of our method the Kohn-Sham orbitals
are placed at appropriately chosen positions Rα .

Information on the Ag + PIC adsorption can be produced
from the Dyson Eq. (7) that describes the interaction between
the free molecule and silver particle. In this Dyson equation
the part of the unperturbed Green’s function is played by the
augmented Green function

GNS
Ag+PIC(z) =

⎛⎝G0
PIC(z) 0

0 G0
Ag(z)

⎞⎠ . (A10)

To describe the molecule–silver nanoparticle interaction
we use the approach known in the theory of transition metal
impurities in semiconductors.12,45–48 The terms in the model
Hamiltonian (2) for the Ag + PIC nanosystem are written as

Hr
PIC−Ag =

∑
kia

Mkia c
†
kdia + h.c.,

and

H
p

PIC−Ag =
∑
kk′

Wkk′c
†
kck′ .

Here, ck (dia ) and c
†
k (d†

ia
) denote the usual fermionic annihila-

tion and creation operators, respectively, which are labeled by
the indexes k and ia containing site, orbital, and spin degrees
of freedom; Mkia is the s,d − ia-hybridization matrix element,
and Wkk′ is the matrix element for the Ag particle short-range
potential scattering (the subscript “a” refers to the ath adatom
in the PIC admolecule and ia stands for the corresponding
electronic state and atom site). The Dyson equation reads

Giaia (z) = GNS
iaia

(z)
[
1 + M̃ia (z)Giaia (z)

]
, (A11)

where

GNS
iaia

(z) = 1

z − εia − �Viaia

,

M̃ia (z) = Mia (z)Q−1(z).

Off-diagonal elements even for the nearest neighbors are up
to two orders of magnitude smaller than the diagonal ones and
are neglected.

The PIC electron levels εia are found self-consistently as
solutions of the Kohn-Sham equations for the PIC related
orbitals in the nanosystem environment. The self-energy
Mia (z) contains two contributions. The term

Mia (z) =
∑

k

|Mkia |2
z − εk

, (A12)

describes the hybridization between the s,d PIC orbitals (ψia )
and the Ag electrons (ψk) with the matrix element

Mkia =
∫

�A

ψ∗
k (r)�V (r)ψia (r − Rα)dr. (A13)

The factor

Q(z) = 1 − �VpotG
0
Ag(z), (A14)

in Eq. (A11) describes the short-range potential scattering,
where

�Vpot =
∑
kk′

∫
ψ∗

k (r)�V (r)ψk′(r)dr, (A15)

and

G0
Ag(z) =

∑
k

〈k|(z − H 0
LDA

)−1|k〉 =
∑

k

1

z − εk

, (A16)

is the single-site lattice Green’s function for the electrons in
the Ag host cluster described by the Hamiltonian H 0

LDA.
The Ag electron levels εk are found self-consistently as

solutions of the Kohn-Sham equations for the Ag-related
orbitals in the nanosystem environment. The Green’s function
(A11) describes the hybridization between the PIC electron
orbitals and the electrons in the silver host cluster, where
the Ag electrons are influenced by the potential scattering
due to �V . If this scattering is strong enough, it results
in the splitting off of localized levels from the top of the
band. This effect is also taken into account in Eq. (A11): the
positions of the corresponding levels before the hybridization
are determined by the zeros of the function Q(z) in the energy
gap �HOMO-LUMO of the Ag + PIC nanosystem, which arises in
the electronic structure due to the potential scattering only. As
a result the equation for the deep level energy determined as a
pole of the Green’s function [Eq. (A11)] within the framework
of the LDA technique reads

z − εia − �V LDA
ia ia

= M̃ia (z). (A17)

It takes into account the resonance part of the scattering
amplitude in the ia (PIC) channel and its mixing with the
potential scattering states arising in the k (Ag) channel.
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The imaginary part of the Green’s function yields the spatial
and energy electron distribution

ρ(r,ε) = − 2

π
ImG(r,r; ε).

Integrating over the energy we get the charge density distribu-
tion, whereas the local density of states (e.g., in the cell �A)
reads

nloc(ε) =
∫

�A

ρ(r,ε)dr.

The change of the density of states is

�n(ε) = Tr(GAg+PIC) − Tr(G0
Ag),

or after straightforward calculations

�n(ε) = 2

π
Im

∑
ia

d

dε
ln

[(
z − εia − �Viaia

)
Q(ε) − Mia (z)

]
.

(A18)

The problem is treated self-consistently, starting with
the trial set of LCAO Slater-type functions. The difference
potential in the zero approximation is a sum of the atomic
potentials of the nanosystem. The self-consistency procedure
for �V (r) is carried out in a mixed fashion. The first two
iterations use the arithmetic average scheme, which later on
is effectively substituted by the Aitken scheme.26 Just seven
iterations produce a 10−4 Ry self-consistency.
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