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The differential A, [Eq. (9)] between the zero wg, and
harmonic w,, vibrational frequencies of the polyatomic mol-
ecules follows from Egs. (8) and (9) and can be attributed to
the anharmonic interaction of normal vibrations. We there-
fore wish to make a comment regarding the existing estimate
of the accuracy of quantum-mechanical calculations of the
vibrational frequencies of polyatomic molecules. As we
know, this estimate is produced by comparing the theoreti-
cal frequencies to the experimental frequencies. Here the
theoretical frequencies are harmonic frequencies, while the
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experimental frequencies given the existing experimental
method are the zero frequencies of the oscillations of the test
system. However, an analysis of the numerical values of A,
demonstrates that its value may reach several tens of cm ™.
Thus, for a water molecule the values of A, ; calculated with
a potential function ~40 cm™'. Hence, each identification
of the zero and harmonic vibrational frequencies of a polya-
tomic molecules requires an anharmonic analysis of the test
system. '

In conclusion we note that in the limit p{;> -0,
pf,,’k’. -0, energy spectrum (8) and (9) becomes the sum of
the energy spectra of noninteracting Morse oscillators,
which indirectly supports the good accuracy of the approach
used in the study.

The author wishes to express his gratitude to L. P. Ra-
poport for information on studies carried out using the vari-
ational-iterative method.
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Theory of nonsteady-state spectroscopy of superfast vibronic relaxation
inmolecular systems based on degenerate four-wave mixing?

A non-markov theory of nonsteady-state four-photon spectrscopy of vibronic relaxation in
complex molecules using ultrashort pulses and incoherent light is developed. The theory is

applied to doped centers in crystals for the case of intense heat generation (o,,t 2> 1, where 0, is
the low-frequency vibrational contribution at the second feature of the absorption spectrum and
1, is the vibration relaxation time). It is demonstrated that the following times are typical for the

time evolution of the systems investigated o, '/

GENERAL

Recently, techniques for femtosecond spectroscopy of
electron transitions in complex molecules based on non-
steady-state degenerate four-wave mixing and generation of
a signal with new wave vector k, =k, +k,- —k,, have
been developed using ultrashort pulses USP'~* or incoherent
light.>'® To measure vibronic relaxation using these tech-
niques, it seems useful to set up an experiment which would
allow the vibronic relaxation to manifest itself in the most
pronounced way possible. This entails developing a theory of
techniques based on a sufficiently realistic model of an elec-
tronic transition in a complex molecule, taking into account
final duration values or coherence times of the excitation
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<T<t,whereo;,
time of the electronic transition, and 7' = (¢,/ o’g is the irreversible dephase time. The most
appropriate techniques for measuring vibronic relaxation are identified.

~12is the reversible dephase

pulses. Development of such a theory is the goal of this pa-
per. Some of the results obtained herein generalize the treat-
ment in Ref. 11. The stimulated echo in a system of different
electronic—vibrational centers with pronounced nonuniform
absorption-band broadening is addressed in Ref. 12.

Let a group of molecules with two electronic states
(n = 1.2), each of which is subjected to adiabatic perturba-
tion W, (Q) from a vibrational subsystem of a molecule and
a solvent, be exposed to radiation '

3
E (r, t)=-;— 2 {(8mbm () e3P [1 (kpr — )] + c.C.. )} (1)

m=1

For a positive frequency component of such a system’s
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cubic polarization describing the generation of wave k, the
following can be obtained in the Condon approximation'>'*

@
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¢

g)= -2 [ arr e —) @ ue,
0

u=W,—W1-<W,—W,>EW,_W,,

the angle brackets indicate thermal averaging over the vari-
ables of the vibrational subsystem in the ground electronic
state of the molecule;

i i INLA
s =oxp(§ Wit)uesp(—=FWit),  Buwwr=—"gis | DU

X <". (ZB,,_ ("en') (x.e;")>0r exp [i ((km' + km" i k,,,) Fim “’t)]v

xD¢, is a matrix element of the dipole-moment operator
taken with respect to the electron wave functions; ).,
signifies averaging over the various molecule orientations;
T, = (2y) ' is the lifetime of the excited state 2; @,, is the
frequency of the 12 Franck-Condon transition; N is the
system particle density, and L, is the Lorentz correction
factor for a local field. From Egs. (2) and (3b) it follows
that the cubic polarization of the system being investigated is
completely determined by the correlation function
K(t) = (u(0)u(r))of the vibrational perturbation u(Q).
The moleculer electronic transition model under considera-
tion here'™'>17 includes two groups of optically active
(OA) vibrations: low-frequency (LF) (w? <05, ) and high-
frequency (HF) [0} R 03> (kT /#)*]. Accordingly,
K@) =K, (1) + K, (D), and g(#)
=g, (1) + g (¢). The quantity o5, = K, (0)/#” is the con-
tribution from OALF vibrations at the second centered fea-
ture of the absorption spectrum. The quantity 7, ~@, repre-
sents the attenuation rate of the correlation function K (¢).
We will use a non-Markov model of an OA oscillator'® for
the case of weak attenuation to describe the vibrations (@}, )

g,(t)=——so[1+(1wo +—§%>t-—eXp((in-—I‘)t)] (t >9), (4)

306 Opt. Spectrosc. (USSR) 68 (3), March 1990

where Ty = 2y(0)kT'Sy/#iw, is the attenuation parameter of i
a zero-phonon line.

Because of the inequality o,,¢ 2> 1, the exponent in Eq.
(3b) is a large parameter, which makes it possible to limit
the expansion of these exponents to an exponential series at
the extremum points. However, the extremum points are

1
different for nearly classical LF system motion (@ <kT /# . h
and |Re X, | >{Im K,|) and quantum LF system motion B
(w, kT /#, |Re K, | ~| Im K, |). Therefore, each case will g |
be considered separately. 3 t
o e
CLASSICAL NATURE OF LF SYSTEM MOTION ;‘
For a nearly classical case, the extremum point is | E ¢
T, =73=0,and 7, is arbitrary.'"'>-'7 Expanding the corre- i (
sponding exponents with an accuracy up to the second-order N 2
terms at the extremum point, we have Z'
P, 5 (t1 T2, ) = {1 +exp [—121 Im g, (1]} ] -
X exp [— % (s3+3F 2‘1‘1‘]’,(‘2))]- (5) % 1 T
where g, (7,) =dg,/dr, and ¥, (7;) = K, (1,)/K,(0) The
first trm in the braces in Eq. (5) corresponds to a four-time Wi
correlation function K, (0, 73, 7y + T2+ 73, T2 + 73), for vil
s or K* (0, 73, 7o 4 73, 7y + 7o + 73), fOr F3, with the -
_ variable 7, determining the evolution time of the molecule tic
wave function over the potential surface of the ground elec- en
tronic state 1.!7 Consequently, the above functions are no
linked to vibrational relaxation processes in the ground elec-
tronic state of the molecule. Using Eq. (3a) ina similar fash- |
ion as Ref. 17, it ispossible to show that for correlation func- in
tions K. (0, 7o+ 75 Ty 4 To ¥ 7T 7,) and X! 0 aat
Ti+ T+ T3 T2+ T3 Tas which correspond to the second s
term in the braces in Eq. (5), 7, determines the evolution | k
time of the molecular wave function over the_ potential of the o; .
excited electronic state 2:—for example K, (0, 7+ 7y | effe
T+ T+ TyT3) = (exp[iW, (T, + ) /filexp(iW,7,/f) Thi
Xexpl — 1W, (7, + 75)/filexp( — iW,r,/#)). Therefore, | pha
the latter functions are linked to vibrational relaxation pro- § o
_cesses in the excited electronic state and describe lumines- | sign
cence-type effects (including hot ]liminescence). Eq
For &,(1) =&,expl — (A72)> (t— 1) +iot) exc;i
Gaussian excitation pulses with duration t, = 1.665/ opti
A> 05”2 we obtain, using Egs. (2)-(5) fos
. fron
PO (r, t) .__..T’:..'. 2 —’%exp[—ZSo i _(f’_z_‘_i'izT":";'_m):]
n, k=0
X 2 Bt m S (£)

¢ | draoxp (—ea/T) 6 (¢ — 52) 80 (¢ — x0) [0 s2) + w0 sl
0

where !
P (2) = [1 — 4 (s2) + A% (3 4 24, (xa) + 43 (za))/o2]
2= (182 [tg 2+ ¥, (z2)) — t B+ ¥, ()

Ftrttm Ftm(4 (r2))]

— [(@g1 — @ — wgydj2) (1 — s (<2))

— 0o ((—=1) ke + nd, (=2))D/(P (52) (2920)")s
w(z) = exp( — 22 [1 + (2i/\m) 5§ exp(¢*)dt ] isthep 08
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ability integral of the complex argument;'® &, is the Kron-
ecker delta; @,, = @,; — @ySp; and w, is the contribution to
the Stokes shift of the equilibrium absorption and emission
spectra of the OA L.F vibrations. Equation (6) is valid for
Sy< 1 and/or ¢, > (2T') ~'. The terms w (z;) and w (2,) in
the right-hand part of Eq. (6) are the contributions to 7>+’
of the nonequilibrium absorption and emission processes,
respetively. The term (@, — @ — 0y 6, )[1 — ¥, (7,)] in
Eq. (8) describes the relaxation of the average frequency of
the absorption ( j = 1) and emission ( j = 2) spectra to their
equilibrium values.

We will examine three-pulse®’ and two-pulse'~ meth-
ods for nonsteady-state scattering. The three-pulse method
(1) is based on scattering a test pulse & ;, delayed by a fixed
amount of time T'relative to the last of the pulses &, and & ,,
off of a grating produced in the medium by &, and & ,. The
delay 7 between the latter pulses is varied. The two-pulse
method (II) is derived from method I when k; =k, and
T = 0. For acting pulse durations ¢, satisfying the condition

ol gt, < (t,/0n,) =T, 9)

we obtain from Eqs. (6)-(8) for method II, ignoring OAHF
vibrations, Z* ~exp[ — (A%/6) (t — 2t)*],i.e.,a photon
echo appears in the system. In such case, the optical transi-
tion under consideration behaves as a nonuniformly broad-
ened transition, and the signald, ~ = _dt | Z®*( r,ti2 does
not contain information about ¥, (¢). When

t,> T (10)

in Egs. (7) and (8), it is possible to ignore terms ~ A? be-
cause of the condition A(20,,) ~"/?*«1, and Eq. (6) can be
used for any pulse shape in this case, the signal
k, =k, + k,,- — k,, only exists when pulses & . and & .-
overlap in time (see also Ref. 1 12. In other Words, coherence
effects associated with dephasing reversibility disappear.
Thus, the quantity T = (,/0,,)"/? is the irreversible de-
phasing time of the system. Such an interpretation of Tis
consistent with the behavior of the four-photon scattering
signal in our model during biharmonic pumping [Ref. 14,
Eq. (12)]. The reason for T <1, is related to the presence of
excited vibrational states with lifetimes less than 7, in the
optical transition [see Ref. 11, Eq. (25) ], we emphasise that
Eqgs. (6)—(8) describe in a continuous fashion a transition
from the time frame in which coherence effects such as pho-

1 [ R (O N S ot (e Dt (SN WS (NN WAL VS G
=1 =0.6 1/ 0.6 1 1.6 2 2.6
(t/t,)1.665

FIG. 1. Curve of J, (7), computed using Egs. (6)-(8) and ignoring
OAHF vibrations, for method II with T\»¢,. I—t,>1,, 2 , 3—Re
(1) = exp( —1,/t,), 1,05, =5.16, t./t, =2 and &= mz,, 2—
wg, = (2042); 3—wg, = 3.72 (20,,) "2
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hme fl’dme,
tonechoexisttothe. . wherereversible dephasing disap-
pears. Calculations for these equations show that in method
I, when T,>1, X t,, relaxation of the correlation function
Y, (75) is weakly reﬂected in the signal. Only when ¢, ~ T do
the characteristics of coherence effects caused by polarxza-
tion appear (see Fig. 1).

It is possible to demonstate'" that when T>t in meth-
od I, the correlation function of the excitation field is mea-
sured, as was observed in Ref. 4. However, if method I is
modified such that 7 =0 and 7' = var vibronic relaxation
should appear more readily.” In that case, applying the con-

- dition in Eq. (10) and ignoring OAHF vibrations, it is possi-

ble to obtain from Egs. (6)—(8)
I,(0) ~ | dt|@o (e, 1) =t By ! F ()

—

X S atl (t —T) [1!: [ S diy xp (= /T3)

0

-0

2
X I (t — t3) (1 + exp(—A2c,T)) (Fy (v2) + F, (c,))]

+ 4 [S drgexp (—t2/Ty) I (t — 72)
’ 2
X (1 + exp (—4%1,T)) (X (v2) + X?(Tz)):l , )
I =8 @ (11)
It directly follows from Eq. (11) that signal J, (T) is
determined by light-induced gratings, the efficiency of
which depends on changes related to vibrational nonequli-

brium processes in the Fa,,, absorption (a) and emission
(@) spectra

Py, o (z2) = (2o () exp [—(0 — wg, ¢ (v2))? 29 (x2))"] (12)
at the active pulse frequency w, as well as on the correspond-
ing changes in the dispersion curves

X, ¢ (s2)=Fy o (1) Exfi ([0 — 0g, ¢ (w))/[20 (=)]),  (13)

where
“("z) =0y, (1 — ¢ (v2))s

W, (Tg) = wo1 — Wy

W, (T2) = wgy + (0 — wg1) ¢, (72),

t

(0 — o3 o) 4, (5), Exfi ()= | exp (+¥) de.
. 0

As can be seen from Eq. (12), F,,_,p (7,) at each instant
in time 7, is a Gaussian function with detuning @ — @, (73)
and width proportional to [20(7,)]"/2, which approaches
its steady-state value over time. Terms ~exp( — Azg T) in
Eq. (11) describe the coherence peak, and when pulse 3 does
not overlap pulses 1 and 2 (T'>¢,), they can be set equal to
zero.

QUANTUM NATURE OF OALF VIBRATIONS

In the quantum case, |Re ¥, | ~| Im ¢; |, the extremum
point for logarithms of four-time correlation functions K,
0, 75, 71+ 7+ 73 T+ 73) and K* (0, 73 T2+ 73
7y + T, + 73) is 7y = 73 = 0, with 7, arbitrary; and forK, (0,
Ty + Ty T+ T+ 7)) and K¥ (0, 7,4+ 7+ 75, 7, + 73,
T3), is 7, = 73 = 7, = 0. It is possible to state that for short
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pulses satisfying Eq. (9), when 7, can be set to zero, a photon
echo appears in the system and the signal J, does not contain
information about ¥, (). However, for longer pulses satisfy-
ing Eq. (10) (in particular, for ¢, ~f;), one cannot assume
7,~0. Therefore, for 7#0, the main contribution is made by
the functions K, (0,73, 7, + 7, + T3, T2 + 73) and K * (0, 75,
T, + T3, 71 + 72 + 73) (Ref. 16) and

Ff. 2 (T1s T2s "a)

= exp {——2 (13 < F 2ua5s (Ro g, (xa) & ¢ Im ‘P.(‘z))]}-
(14)

This can be explained in physical terms by the fact that
in the quantum case, the Stokes shift @, ~S@, (whereSisa
dimensionless parameter for the shift of the adiabatic poten-
tial minima for OALF vibrations during electron excita-
tion), und_er condit_i_ons of intense heat generation
(@2 < 0,, ~S@2, since S 1), significantly exceeds the vibra-
tional (@, ) contribution at the halfwidth of the absorption
spectrum (~\/a_2; ~5_‘\/? ) Thus, the vibrational sublevels
of the upper potential obtained in the 1 -2 Franck-Condon
transition are significantly more highly excited than the
ground-state sublevels involved in the transition. Because of
this, relaxation of the first sublevels takes place significantly
faster, a fact which also predetermines the small contribu-
tion of luminescence processes to the four-wave mixing sig-
nal to our model.

For the quantum nature of OALF vibrations, we are
limited to the case of precise resonance interaction
(w5, — @ =0) and shall not consider OAHF vibrations;
such a cms:e exists, for example, in the region of the 0-0 tran-
sition for vibrations. By inserting Eq. (14) into Eq. (2) and
carrying out the necessary computations, while applying the
condition in Eq. (10), we obtain

™ N
P (I‘, t) =-GT‘. 2 Bmm'm”gm” U) OS dtg exp (—12/2‘!)
mm’ m”
X {Re [é',,,, (t-— o) & (t —T2)

A% {3ty — &t 4t - tyr + 2ty)
(270 (1 — §2 (t2) + 632/ag,)] 2 )]

X (1 = 3 (va) + 6%0,)"" w (t

L Re[6 ( —xa) S5 ( — ) (1 — (=)

X In [1 — 243 (x2) 4+ 24, (za2) (43 (v2) — 1)"-11} ¢ (15)

As applied to method I for £ =0 and T = var, Eq. (15)
becomes

@

14(T) ~ S at | F®*(r, 1)

-0

“: w@ (=]
= | B [ aere—ni| [azeexp(—ea/m 1 =)

— 0

2
X (1 + exp (—A%%T)) Re (1 — 43 (==>)""]

42 { S dryexp({—ze/T1) I (t—72) (14-exp (—242c,T))
0

2
%¢ Re [(1 — 42 (s2))™7 In {1 — 243 (x2) + 24, (%) (42 (v2) — 1)"'}]] )
(16)
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The treatment of the latter expression is similar to Eq.

(11),

METHOD USING NONCOHERENT LIGHT

In this case, we examine the dependence of the energy
J. ~ |.@m+|2 (Ref. 9) of a signal wave with wave vector
k. = 2k, — k, on the time delay 7 between pulses k, and k,
(Refs. 6-10) (the line denotes averaging over the various
configurations of a random excitation field) n the simplest
cases of a uniformly and nonuniformly broadened two-level
system, this method permits measurement of the irreversible
dephasing time of a transition, with a time resolution deter-
mined by the pulse coherence time.*' .

Using Eq. (2), itis possible to show that in the case of
excitation light with Gaussian statistics and spectral width
Aw satisfying the inequalities | ' € Aw < o3/? (which corre-
sponds to the conditions of the experiments with complex
molecules®®), the largest contribution to J, (7) is deter-

mined by

I, @)~ Bl | do's (@) \ e
0

-0

% exp [ (0 — w1 — @) 1 — 7 (71 +78) — /il
X (R (ra — T) Py (t1, T2, T8)

X exp [—1 (0 — wy) Ta] + R* (ra + t) Fy (21, T
2

X exp [t (@ — wg1) Ta]} (1m

where @ (@") is the power spectrum of the excitation field
and R(t) = &*(, + )& (1)) = 5 plw)expliot) dois
its correlation function In the case of rapid vibrational relax-
ation (¢, € T,), which takes place for solutions of complex
molecules at normal temperatures, we obtain from Eq. (17)

J4(x) ~4 | Bysa |8 R (0)| R (x) [ T1? Re?® @y (w1 — @)

X | By (g1 — ) + Bo (g1 — 0) |2, (18) 3

where

D, (0yy — ) = S dryexp ! (0 —wyy) 7 + g (w)]
[]

describes the equilibrium curves for absorption (Re ®,) and
dispersion associated with absorption (Im ®,); @y
(wy — @) =S5 ex;ﬁ(w — @y +By) T +8(r)] dry is
the same thing, but pertains to the emission spectrum and
@, is the total Stokes shift it follows from Eq. (18) that
under the stated conditions, J, (7) is determined by the cxd-‘
tation light correlation function, as was observed in Ref.

At low temperatures and in solid matrices, £, can increas
significantly. For very large values of t, (in particular, whea
t, > T,), we obtain from Eq. (17

S3k+D  (kITy 4 1) (10T 1)
(R TTT (2KTT; 4 1) (ATTy 1)

oo}
2r
1,(1)~4|312,|’;-’-;T"{ 2
k

y I=

X 8xp (—4Sy— [(w— By —kuwo)?*

+ (0= 0g — lo0))/(202)) | [ deaw’ R —p) R(p— ) B* (¥ =
0
2kT

 oxp[=2(1-+ 2 501(0)) ¢ +¢) — 20 Ga-+1#)
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In this case, it is possible to determine the OAHF oscil-
lator attenuation parameter in experiments using noncoher-
ent light, if the excitation takes place in the region of the 0-0
transition, then k = / = 0 can be inserteéd in Eq. (19), which
then takes a form similar to that in Ref. 10, where the quanti-
| tyy + (2kT /#iw,) Syy(0) is used instead of T,.

Thus, according to our study, for time evolution of an
OALF vibrational system, the following times are typical
05, <« T<t, < T,. The usual values of these parameters in
the case of liquid solutions of complex molecules at normal
temperatures are o3, ~ 500 cm ' and ¢, ~ 105", with T be-
ing ~25 fsec. Excitation pulses used in present-day experi-
ments have durations of ~ 10~ '3 sec, which is insufficient
for fulfilling the condition in Eq. ( 9), corresponding to the
existence of reversible dephasing in the system. In the situa-
tion we examined, the main contribution was from non-
steady-state induced gratings in a vibrational-nonequil-
brium system. In this regard, method I (with 7= 0 and
T'= var) is preferred for studying vibronic relaxation In the
absence of spectral transfer (low temperatures, solid matri-
ces), irreversible dephasing is determined by OAHF oscilla-
tor attenuation, which can be studied using methods I (with
T = cons and 7 = var) and II, and with the use of incoherent
light.

Finally, we will point out factors which could decrease
the temporal shift Az of the signal maximum in method II,
hindering determination of the relaxation parameters. In the
case when a thermal grating is formed in a dye by CW laser
pulse intervals which do not exceed the dye’s relaxation
time, diffraction of the last pulse of the wave train can occur
at the grating formed by the preceding pulses (three-pulse
scattering with maximum signal energy occurring at 7 = 0).
In addition, for incomplete mode locking, there can be an
intermediate case between the USP excitation and incoher-
ent light for which the signal maximum occurs at 7 = 0 [see
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Eq. (18)]. And, lastly, the third cause of a decreased At
could be the USP phase modulation®

"Presented at the XX All-Union Conference on Spectroscopy.'®

2The sum of the infinite series in Eq. (25), Ref. 11, is equal to
(1 —¢?)~"2, where ¢, = exp( — 7,/7. ), using the notation of Ref. 11.

¥In Ref. 5, in a low temperature matrix, measurements were taken at
7=0,and T = var.

“'Values calculated in this paper for shift Az for method Il at T',» ¢, R 1,
(see Fig.) agree with experimental values® of At for t, ~ 100 fsec and
exceed measured values of Az for excitation by longer pulses.’
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