
Н.А. Веретенов, Б.Н. Левинский,  Л.А. Нестеров, Н.Н. Розанов, Б. Файнберг, С.В. Фёдоров  
 

Научно-технический вестник информационных технологий, механики и оптики 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics 
2014, № 5 (93) 

1 

 ОБЗОРНАЯ СТАТЬЯ
REVIEW ARTICLE

 

 
УДК 535.2 

УЧЁТ МНОГОЧАСТИЧНЫХ ВЗАИМОДЕЙСТВИЙ В МОЛЕКУЛЯРНЫХ  
J-АГРЕГАТАХ И НЕЛИНЕЙНЫЕ ОПТИЧЕСКИЕ ЭФФЕКТЫ  

В ЭТИХ СИСТЕМАХ 
Н.А. Веретеновa,b, Б.Н. Левинскийc,  Л.А. Нестеровa,b, Н.Н. Розановa,b,d, Б. Файнбергc,e,  

С.В. Фёдоровa,b 
 

a Государственный оптический институт им. С.И. Вавилова, 199034, Санкт-Петербург, Россия 
b Национальный исследовательский университет ИТМО, 197101, Санкт-Петербург, Россия 
c Holon Institute of Technology, 58102, Holon, Israel 
d Физико-технический институт им. А.Ф. Иоффе, 194021, Санкт-Петербург, Россия  
e School of chemistry, Tel Aviv University, 69978, Tel Aviv, Israel 
 

Аннотация. В работе обобщаются материалы исследований,  проведенных авторами за последние годы, и анализи-
руются полученные результаты. Предметом статьи является учет многочастичных взаимодействий в резонансно-
возбуждаемых лазерным излучением J-агрегатах. При таком рассмотрении принимаются во внимание не только пар-
ные взаимодействия, но и взаимодействия данной частицы с тремя и большим числом частиц одновременно. Среди 
проведенных исследований можно выделить три основных направления.  
В рамках первого направления решалась задача вывода из первых принципов  системы уравнений движения для мо-
лекул J-агрегатов с учетом многочастичных взаимодействий, а также парных корреляций между частицами. Вывод 
уравнений из первых принципов приводит в общем случае к системе взаимозацепляющихся уравнений для средних 
от произведения n операторов, относящихся к n разным молекулам системы. Поскольку от уравнения к уравнению n 
возрастает, то возникают проблемы, связанные с расцеплением этой системы, а также факторизацией средних наи-
высшего порядка. Отдельную и наиболее сложную задачу при этом представляет корректное вычисление релаксаци-
онных членов, возникающих при учете механизма экситон-экситонной аннигиляции. Первое направление конкретно 
связано с рассмотрением и решением всех вышеперечисленных задач.  
В рамках второго направления на основе выведенных уравнений проводилось исследование бистабильности в рас-
сматриваемых системах при конкретном учете трехчастичных взаимодействий. При этом основное внимание было 
уделено анализу однородных режимов в J-агрегатах. В частности, показано, что учет многочастичных вкладов сдви-
гает границу существования бистабильности в область меньших констант экситон-экситонной аннигиляции.  
Наконец, третье направление исследований связано с анализом модуляционной неустойчивости для стационарных 
состояний J-агрегатов, рассмотренных и изученных при исследовании бистабильности в рамках второго направле-
ния. Проведено изучение границ областей устойчивости и неустойчивости и их сопоставление с границами сущест-
вования бистабильности. Полученные результаты позволяют более надежно выделить область параметров, где могут 
наблюдаться существенно нелинейные эффекты, которые можно было бы использовать для создания схем молеку-
лярной памяти и, в более широком контексте, для создания устройств оптической логики. 
Ключевые слова: J-агрегаты, экситон-экситонная аннигиляция, диполь-дипольное взаимодействие, многочастичные 
взаимодействия, бистабильность, диссипативные солитоны, модуляционная неустойчивость. 
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Abstract. In given work the results of investigations performed by authors last years are summarized and analyzed. The 
subject of paper is taking into account of many particle interactions in molecular J-aggregates at their resonance excitation by 
laser radiation. In this case it is taken into consideration not only twin interactions, but also the interactions of given particle 
with three and more number of particles simultaneously. Among carried out investigations it can be denoted three basic 
directions. The first direction is connected with derivation (from first principles) of motion equations for molecular of J-
aggregates with taking into account of many-particle interactions, and also twin correlations between particles. The derivation 
of equations from first principles leads in generally to the system of coupled equations for the means of products of n 
operators relating to n different molecules. And because n increases in every following equation, then the problems arise, 
which connected with uncoupling of this system and also factorization of the means with the highest n. The most difficult and 
complicated problem in process is correct calculation of relaxed terms, arising due to exciton-exciton annihilation. The first 



УЧЁТ МНОГОЧАСТИЧНЫХ ВЗАИМОДЕЙСТВИЙ В МОЛЕКУЛЯРНЫХ...
 

Научно-технический вестник информационных технологий, механики и оптики 
Scientific and Technical Journal of Information Technologies, Mechanics and Optics

2014, № 5 (93) 

2 

direction is connected concretely also with solution of all above mentioned problems. In frames of second direction it was 
carried out on basis of obtained equations the study of bistability, if three-particle interactions were accounted. In so doing 
primary attention has been concentrated on analysis of homogeneous regimes in J-aggregates. In particularly it was shown 
that taking into account of many-particle contributions leads to the shift of bistability boundary into region of smaller 
constants of exciton-exciton annihilation. At last the third direction of investigations is connected with analysis of 
modulational instability for stationary states of J-aggregates considered earlier at bistability study. The study of stability 
region boundaries and their correlation with boundaries of bistability regions have been carried out. Obtained results allow 
more rigorously to determine the parameter region, where it can be observed nonlinear effects, which can be used for 
development of optical logic devices and in particularly of molecular memory circuits. 
Keywords: J-aggregates, exciton-exciton annihilation, dipole-dipole interaction, many-particle interactions, bistability, 
dissipative solitons, modulational instability. 
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Введение 
 

Ориентированные J-агрегаты цианиновых красителей обладают коллективным (экситонным) меха-
низмом их резонансного возбуждения, что проявляется в крайне неординарном поведении их фотоотклика 
(см. [1–6], а также обзоры [7, 8]). Одна из наиболее важных особенностей этих систем – это гигантские зна-
чения нелинейных восприимчивостей, что, в свою очередь, при субпикосекундных временах релаксации 
делает эти наноструктуры весьма перспективными для разнообразных приложений [9, 10]. Значительный 
интерес представляет перспектива использования J-агрегатов в схемах молекулярной памяти. Необходимая 
для запоминания информации бистабильность в одиночных J-агрегатах была предсказана и изучена в рабо-
тах [11, 12], а в ансамбле агрегатов (в тонкой пленке) – в [13–15]. В [16] для J-агрегатов были предсказаны 
«наносолитоны» – диссипативные молекулярные солитоны нанометровых размеров. Дальнейший анализ 
этих структур содержится в работах [17–19], результаты суммированы в монографии [20]. Все перечислен-
ные работы были выполнены в приближении одночастичной матрицы плотности без учета трехчастичных и 
более высокого порядка взаимодействий, а также корреляций между молекулами. Следующий принципи-
альный шаг – учет многочастичных взаимодействий молекул в цепочке и двухчастичных корреляций между 
ними – выполнен в работе [21], в которой построена последовательная теория резонансного возбуждения 
молекулярных цепочек когерентным поддерживающим излучением при учете указанных факторов. В рабо-
те [22] было проанализировано влияние эффекта трехчастичных взаимодействий на характеристики ста-
ционарных однородных режимов идеальной бесконечной цепочки и условия бистабильности для этих ре-
жимов. Наконец, в работе [23] проведено детальное исследование модуляционной неустойчивости стацио-
нарных состояний однородных режимов, рассмотренных в [22] при учете многочастичных взаимодействий. 
Это исследование позволило определить границы областей устойчивости и неустойчивости и соотнести их 
с границами существования бистабильности. 

Настоящая работа существенно использует результаты работ [21–23], в которых проводился учет 
вкладов от многочастичных взаимодействий, и состоит из трех разделов. Первый раздел обзора посвящен 
выводу из первых принципов уравнений движения для молекул цепочек при последовательном учете 
многочастичных вкладов, связанных с экситон-экситонной аннигиляцией и диполь-дипольным взаимо-
действием. В следующем разделе проанализировано влияние трехчастичных взаимодействий на биста-
бильность стационарных состояний однородных режимов в J-агрегатах. В заключительном разделе рас-
сматривается модуляционная неустойчивость стационарных состояний, исследованных в предыдущем 
разделе. 
 

Вывод уравнений движения для резонансно возбуждаемых J-агрегатов с учетом многочастичных 
взаимодействий и парных корреляций между молекулами 

 

Модель J-агрегата и аппарат для описания системы молекул. Отдельный J-агрегат моделиру-
ется в виде цепочки, состоящей из трехуровневых молекул, первый и второй уровни которых связаны с 
аналогичными уровнями других молекул посредством диполь-дипольного взаимодействия, а взаимодей-
ствие с третьим уровнем осуществляется с помощью механизма экситон-экситонной аннигиляции. При 
этом внешнее монохроматическое поддерживающее излучение может напрямую взаимодействовать лишь 
с переходом 1 2 . Считается также, что частота перехода 2 3  близка к частоте перехода 1 2.  В 
отсутствие радиационных переходов с первого и второго уровней на третий накачка этого уровня осуще-
ствляется за счет механизма непосредственной передачи возбуждения от одной молекулы другой, нахо-
дящейся в соседнем узле цепочки. В этом процессе одна из молекул, находящаяся на втором возбужден-
ном уровне, взаимодействуя с другой молекулой в аналогичном состоянии, отдает ей свою энергию, пе-
реходя в основное состояние, в то время как вторая молекула переходит на третий уровень. Предполага-
ется, что третий уровень по своей природе является электронно-колебательным и крайне быстро распада-
ется с последующей передачей энергии на второй и первый уровни. 

Все описанные выше процессы можно рассмотреть также в рамках теории экситонов. Это рас-
смотрение показывает, что в цепочке молекул существуют одноэкситонные состояния с энергиями, близ-
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кими ко второму возбужденному уровню, а также двухэкситонные состояния с энергиями, близкими к 
энергии третьего уровня. В результате механизм передачи возбуждения между соседними молекулами 
приводит к возбуждению двухэкситонного состояния, которое, взаимодействуя с близким по энергии 
электронно-колебательным уровнем молекулы, очень быстро аннигилирует. Было обнаружено, что с рос-
том интенсивности накачки роль экситон-экситонной аннигиляции возрастает, и она начинает сущест-
венно влиять на оптический отклик экситонной системы [11, 24–34]. Наиболее часто для анализа  
J-агрегатов используется подход, при котором цепочка молекул описывается уравнениями типа уравне-
ний Блоха для одночастичных матриц плотности. При этом взаимодействие между молекулами выводит-
ся на основе классического выражения для запаздывающего взаимодействия между системой диполей, 
которыми моделируются молекулы. Кроме этого, в систему обычно феноменологически вводится также 
упомянутое выше взаимодействие, приводящее к экситон-экситонной аннигиляции. В получающейся 
таким образом системе уравнений, как правило, учитываются только двухчастичные взаимодействия, 
которые представлены в факторизованной форме, т.е. без учета корреляций между молекулами. 

Однако, как будет показано далее, систему уравнений для J-агрегатов можно вывести также из 
первых принципов. В этом случае возникает иерархия взаимозацепляющихся уравнений для средних от 
произведений операторов, относящихся к разным молекулам цепочки. Такая система содержит средние, 
начиная от одночастичных и кончая N-частичными средними (N – число молекул в цепочке), причем 
N>>1. 

Важным аспектом данной задачи является то, что третий уровень молекул представляет собой сис-
тему большого числа колебательных подуровней, взаимодействие с которой приводит к диссипации энер-
гии и необратимости процесса экситон-экситонной аннигиляции. Если, исходя из первых принципов, 
произвести корректный учет такого взаимодействия, то в уравнениях движения добавится ряд многочас-
тичных вкладов, описывающих релаксацию системы, связанную с экситон-экситонной аннигиляцией, но 
отсутствующих в рамках чисто феноменологического подхода. 

При этом, если ограничиться рассмотрением уравнений только для одночастичных средних, а все 
многочастичные средние в этих уравнениях факторизовать, то мы приходим к традиционным уравнениям 
[11, 17], в которых теперь учтены поправки, связанные с трехчастичными взаимодействиями. Если также 
принять во внимание систему уравнений и для двухчастичных средних, то тем самым можно учесть пар-
ные корреляции между молекулами. В настоящей работе рассмотрен вывод как уточненных уравнений 
Блоха, так и системы уравнений, учитывающей парные корреляции между молекулами [21, 22]. 

Рассмотрим линейную цепочку, состоящую из N трехуровневых молекул. Как было упомянуто 
выше, такая цепочка может быть использована для моделирования J-агрегатов. Будем полагать, что наи-
низшее состояние каждой молекулы определяется вектором состояния g  или 1 , а энергия этого со-

стояния равна 1E . Соответственно второе состояние будет определяться вектором состояния e  или 2 с 

энергией 2E . Третьему состоянию сопоставим вектор f  или 3  с энергией 3E . Очевидно, что 

3 2 1E E E  . Для уровней энергии существует и другой набор обозначений, используемый в тексте, а 

именно: 1 2,g eE E E E   и 3 fE E . Молекуле, расположенной в узле цепочки с номером m, будут соот-

ветствовать вектора состояний mg , me  и mf . С помощью этих векторов для каждой молекулы 

можно построить следующие операторы рождения и уничтожения, которые являются операторами про-
ектирования на соответствующие состояния молекулы: mB mg me – оператор, описывающий унич-

тожение возбуждения в молекулe m на уровне «e» и ее переход в основное состояние mg , а также 

mB me mg   – оператор, описывающий рождение возбуждения в молекулe m на уровне «e». 

По этому же принципу можно определить операторы mC mg mf  и mC mf mg  , а также 

mD me mf  и mD mf me  . 

Определим также операторы числа молекул mgN , meN  и mfN  в состояниях mg , me  и mf  со-

ответственно: 

= = ,

= = ,

= = ,

= 1.

mg m m

me m m

mf m m

mg me mf

N B B mg me me mg mg mg

N B B me mg mg me me me

N C C mf mg mg mf mf mf

N N N







 
 
 
  

 

Все операторы, относящиеся к разным молекулам, очевидно, коммутируют между собой (по пово-
ду определений и обозначений см. также [35, 36]). 

Гамильтониан системы. Общий гамильтониан системы складывается из гамильтониана свобод-
ных молекул, а также гамильтонианов взаимодействия молекул с внешним полем и между собой. В част-
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ности, этот гамильтониан включает в себя также взаимодействие, приводящее к экситон-экситонной ан-
нигиляции. Гамильтониан взаимодействия с внешним электромагнитным полем с частотой 12ν  можно 

представить в форме 

  12
1 1 12

1
= ( )( exp( ν ) э.с.)

2el m
m

H t B E i t   μ e . (1) 

Здесь внешнее поле определяется формулой 1 1 12

1
= ( exp( )

2
E i t E e +к.с. ) , а сам гамильтониан (1) 

представляет взаимодействие указанного поля с вектором поляризации Р системы молекул:   =elH t PE . 

Это взаимодействие учитывается в приближении вращающегося поля. При этом 12μ  является дипольным 

моментом молекулы для перехода 1 2 . 
Таким образом, гамильтониан системы оказывается зависящим от времени. На практике более 

удобно иметь дело со стационарным гамильтонианом. Нетрудно показать, что существует элементарное 
унитарное преобразование операторов системы, применение которого позволяет устранить зависимость 
от времени в (1). Это преобразование [13] приводит к замене старых операторов mB  и mD  новыми mb  и 
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а также к сдвигу энергий уровней в гамильтониане свободных молекул 0H  (см. ниже). Оператор mC , как 

показывает анализ, не входит ни в один из составляющих гамильтонианов взаимодействия, и поэтому в 
данном контексте он не используется для описания системы. 

Общий гамильтониан H  системы можно представить как сумму составляющих его гамильтониа-
нов: 

0= el int annihH H H H H   , 

где 0H  – гамильтониан свободных молекул, 

0 12 12 13ν 12 ν ν
ν

{ (ω ν ) (ω 2ν ) }m m m m m m
m

H b b d d       . (2) 

При этом в (2), а также всюду ниже мы теперь учитываем, что реально третий уровень молекул яв-
ляется электронно-колебательным и расщепляется на систему колебательных подуровней, которым соот-
ветствует индекс ν . Здесь также предполагается, что 1 0m mgE E  , и тогда 12ωm  и 13νωm  являются 

энергиями второго и третьего уровня. 
Гамильтонианы elH , intH и annihH  последовательно описывают взаимодействие с полем накачки, 

диполь-дипольное взаимодействие (см. также [12, 35–38]), а также взаимодействие, обусловленное экси-
тон-экситонной аннигиляцией. Эти гамильтонианы имеют следующий вид: 

12
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Константы взаимодействия lk  [12] равны 
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Здесь μ  – матричный элемент дипольного момента для перехода 1 2 ; 0k  – волновой вектор па-

дающего излучения; a  – постоянная решетки; θ  – угол между направлением дипольного момента μ  и 

осью цепочки; , ( )l k l k : 1, 2…. N; N – число молекул в цепочке. 

Вывод уравнений движения. Зная гамильтониан системы, можно получить уравнение движения 
для произвольного оператора A системы. Такое уравнение имеет вид 

 = ,
dA i

H A
dt 

. (3) 

Следует отметить, что полученное таким образом уравнение движения не содержит взаимодейст-
вия через поперечное поле излучения, которым обмениваются молекулы. В силу того, что такое взаимо-
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действие содержит затухание, связанное с излучением, оно обычно учитывается непосредственно в урав-
нениях движения путем добавления в правую часть (3) оператора определенного типа [39]. В результате 
уравнение (3) переходит в уравнение вида 

 
,

1
= , 2 γ [ ( )]

2l k l k l k l k
l k

dA i
H A b Ab b b A Ab b

dt
    

. (4) 

Здесь γl k  задается формулой (см. [12]) 
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В качестве примера приведем полученное на основе (4) уравнение для оператора числа молекул на 
втором уровне m eN  (m – номер молекулы): 

12
1 1

1 1
= ( ) ( ) ( γ ) ( γ ) ) , .

2
m e

m m m n m n n m m n m n m n annih m e
n m

dN i
i E b b i b b i b b H N
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  



                
μ e

  
 (5) 

Скобки Пуассона с annihH  мы пока не раскрываем, поскольку этот член требует особого анализа. 

Нетрудно видеть, что в полученные уравнения, кроме одночастичных операторов mb , входят также двух-

частичные с индексами m и n. Очевидно, необходимо получить уравнения и для этих операторов. В свою 
очередь, в выведенных уравнениях появляются новые операторы, в том числе трехчастичные, которые 
представляют произведения одночастичных операторов, относящихся к трем разным молекулам. В ко-
нечном счете мы приходим к бесконечной иерархии зацепляющихся уравнений, содержащих многочас-
тичные операторы все более высокого порядка. 

Физический интерес представляют не сами операторы, а средние, получаемые их усреднением по 
матрице плотности системы. В результате бесконечная система уравнений для операторов переходит в 
иерархическую систему для средних от этих операторов. При этом возникают следующие вопросы: как 
сделать такую систему конечной и пригодной для решения, каким минимальным набором средних от 
операторов можно ограничиться для адекватного описания рассматриваемой системы. Если мы хотим 
ограничиться описанием системы с помощью средних лишь от одночастичных операторов, то для замы-
кания системы уравнений нужно представить все многочастичные средние, входящие в уравнения для 
одночастичных средних, в виде произведений от последних. Очевидно, при таком описании мы пренеб-
регаем корреляциями между молекулами. Для учета парных корреляций в описание системы следует до-
бавить, кроме одночастичных, также и двухчастичные средние. В результате возникает добавочная сис-
тема уравнений и для этих средних. А чтобы замкнуть такую систему, многочастичные (число частиц 
больше двух) средние необходимо представить в виде произведений одночастичных и двухчастичных 
средних. При учете трехчастичных корреляций весь описанный выше процесс повторяется. Таким обра-
зом, минимальный набор операторов и средних от них, необходимый для описания системы, определяет-
ся той точностью, с какой мы хотим описать взаимодействия между молекулами цепочки. Следует отме-
тить, что здесь представлена общая концепция выбора базисного набора средних от операторов системы. 
Реально на практике возможны определенные отклонения от этой схемы (не принципиального характе-
ра), связанные с конкретными свойствами системы (см. [21]). 

Целью настоящей работы являлся учет парных корреляций между молекулами, а также многочас-
тичных вкладов в уравнениях, которые возникают при анализе системы из первых принципов и отсутст-
вуют при феноменологическом рассмотрении. 

С учетом сказанного выше в данной работе в качестве базисного набора операторов, а следовательно 
и средних от них, выбраны следующие операторы: mb , meN , mfN , m e n eN N , m nN b  и m nb b  ( m n ). Сюда 

следует включить также набор эрмитовски-сопряженных операторов. Физический смысл средних от этих 
операторов будет пояснен ниже. 

Последовательно подставляя указанные операторы в качестве A в уравнение (4), а затем усредняя 
его, получаем полную систему уравнений для описания молекул цепочки вида 

   1
= , 2 γ

2l k l k l k l k
l k

d A i
H A b Ab b b A Ab b

dt
  



     


. 

Следующий этап работы заключается в вычислении релаксационных членов, связанных с экситон-
экситонной аннигиляцией, и замыкании полученной системы уравнений путем факторизации многочас-
тичных средних, представляя их в виде произведений средних от операторов, входящих в базисный на-
бор. Мы не будем останавливаться на правилах факторизации, поскольку они достаточно подробно изло-
жены в работах [21], а также [35, 38, 40]. Укажем лишь на интерпретацию средних от операторов базис-
ного набора, физический смысл которых достаточно ясен. Так, величина mb  из этого набора пропор-
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циональна дипольному моменту молекулы m при переходе 1 2 . meN  и mfN  определяют населен-

ности второго и третьего уровней молекулы соответственно, а ( )me neN N m n  можно связать с насе-

ленностью двухэкситонных состояний. 
Расчет релаксационных членов, связанных с механизмом экситон-экситонной аннигиляции. 

Вычисление в уравнениях движения членов, связанных с коммутатором, в который входит annihH , требует 

особого анализа. Как упоминалось ранее, мы рассматриваем третий уровень молекул f , состоящий из 
ряда колебательных подуровней, отмечаемых индексом ν . Эти подуровни можно охарактеризовать плот-

ностью состояний ν
ν

ρ( ) δ( )fE E E  , необходимой для вычисления вероятностей перехода. Фактически 

система электронно-колебательных подуровней представляет собой резервуар, взаимодействуя с кото-
рым, возбужденная молекула необратимо релаксирует в более низкое энергетическое состояние. 

Рассмотрим основную идею расчета такой релаксации для населенности второго уровня meN . 

Нетрудно показать, что коммутатор операторов meN  и annihH  можно привести к виду 

ν ν
ν

, [( . .) ( . .)]annih m e p m p m m p m p

p m

i i
H N V b d h c V b d h c 



        
. (6) 

Далее необходимо исследовать эволюцию во времени операторов, входящих в выражение (6). Мы 
будем полагать, что их эволюцию, связанную с механизмом экситон-экситонной аннигиляции, можно 
описать независимо от влияния всех других взаимодействий в системе [41]. В результате для оператора 

νp mb d   получаем уравнение вида 

ν
0 ν

( )
= ( ), .p m

annih p m

d b d i
H H b d

dt


  

 (7) 

Усредняя (7) по матрице плотности системы и используя приближение марковского процесса, это 
уравнение можно формально решить [21], а результат подставить в усредненное уравнение (6). В итоге 
получаем выражение для вклада в релаксацию системы, связанного с механизмом экситон-экситонной 
аннигиляции: 

{ Re [( 2 ) ( 2 ) ]},me
mp me pe pmmk pmmk me k p mppk mppk pe k m

p m k p
k m

d N
w N N i N b b i N b b

dt
 

 


            (8) 

в котором константы pmmk , pmmk  и mpw  имеют следующий вид: 

2

ν2

1
,

ω 2ω

2π
δ(ω 2ω ),

pm mk
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v fv e
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v

V V
P

V V


  

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







 

2mp mppmw   . 

Константа mpw  совпадает с такой же константой, фигурирующей, в частности, в [33]. 

Усредняя уравнение (5) и подставляя в него вместо члена ,annih me

i
H N  

 правую часть уравнения 

(8), получаем уравнение для эволюции meN . Для замыкания системы уравнений, в которую входит 

meN , в этих уравнениях необходимо, как об этом упоминалось выше, провести факторизацию много-

частичных членов [21]. В результате для meN  окончательно получаем следующее уравнение: 


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12
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 (9) 
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Аналогичный подход к вычислению релаксационных членов, связанных с экситон-экситонной ан-
нигиляцией, применяется при выводе уравнений движения и для всех остальных средних, входящих в 
базисный набор. В результате возникает замкнутая система уравнений, в которой учтены двухчастичные 
корреляции между молекулами. Ввиду крайней громоздкости этих уравнений мы их не приводим (см. 

[21]). Отметим также, что в (9) феноменологически учтены вклад 32 mfN , связанный с переходом с 

третьего уровня на второй, а также скорость поперечной релаксации 2γ . 

Учет вкладов от трехчастичных взаимодействий в традиционных уравнениях для одночастич-
ных матриц плотности. При обычном феноменологическом подходе система молекул в цепочках отдель-
ных J-агрегатов описывается уравнениями типа уравнений Блоха для одночастичных матриц плотности. В 
этих уравнениях учитываются лишь двухчастичные взаимодействия, которые представлены в факторизо-
ванной форме. В рамках подхода, изложенного выше, этим уравнениям соответствует система уравнений 
для одночастичных средних. Однако анализ такой системы из первых принципов показал, что в ней, кроме 
двухчастичных вкладов, возникают также вклады, учитывающие трехчастичные взаимодействия. Если по-
лученные уравнения факторизовать, то мы приходим к традиционным уравнениям [11, 17, 22], в которых, 
однако, учтены поправки, связанные с трехчастичными взаимодействиями. Эти поправки возникают в рам-
ках изложенного выше подхода к расчету релаксационных членов, обусловленных экситон-экситонной ан-
нигиляцией. Ниже приведена полученная таким образом система уравнений (10)–(13), в которой поправки 
подчеркнуты прямыми линиями. Нетрудно показать (см. также [11]), что 

( ) ( ) ( )
33 22 11

1
ρ , ρ , ρ , , 2α

2
k k k

kf ke kg k k sN N N b R w     . 

Эти формулы связывают средние от одночастичных операторов с элементами одночастичных матриц 
плотности. При этом ( )

11ρ k , ( )
22ρ k  и ( )

33ρ k  представляют диагональные элементы, соответствующие уровням 1, 2 

и 3 молекулы с номером k; kR  – недиагональный элемент, соответствующий переходу 1 2 . Тогда: 

   

( ) ( ) ( ) ( ) ( 1) ( 1)* *
32 2122 33 22 22 22 22

1,

( 1) ( 1) ( )* * * *
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ρ Re (γ ) ρ ρ 2 ρ [ρ ρ ]

2

1 1
Re ρ ρ ρ

4 4
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lk lk l k k s
l l k

k k k
s k k k s k k k k

R R R
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 i i
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

 (10) 
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 (11) 
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 
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i i i


 1 ,



  (12) 

( ) ( ) ( )
11 22 33ρ 1 ρ ρk k k   . (13) 

Здесь s  – скорость экситон-экситонной аннигиляции;   – частота Раби; m n  – скорость релак-

сации с уровня m на уровень n;   – скорость поперечной релаксации молекулы; k    – отстройка от 

резонанса для изолированной молекулы. 
В следующей главе эта система уравнений будет использована для анализа бистабильности в од-

нородных цепочках. 
 

Исследование бистабильности в молекулярных J-агрегатах при резонансном оптическом  
возбуждении с учетом трехчастичных взаимодействий 

 

Анализ показывает, что факторизованные трехчастичные вклады могут включать в качестве мно-
жителя среднее от оператора числа молекул на нижнем уровне. Особенностью рассматриваемых систем 
(см. [11, 17]) является то, что в равновесном состоянии такое среднее близко к 1, ввиду малой вероятно-
сти заселения верхних уровней молекул. Это напрямую следует из условия нормировки, принятого в на-
стоящей работе (см. [21]): 1mg me mfN N N   , где mgN , meN  и mfN  являются операторами числа моле-

кул в узле m на первом, втором и третьем уровнях соответственно. В связи с этим указанные трехчастич-
ные вклады являются фактически двухчастичными и совпадают по порядку величин с двухчастичными 
вкладами, присутствующими в традиционной системе уравнений. Таким образом, уже только одно это 
обстоятельство может как количественно, так и качественно повлиять на свойства исследуемых объектов. 
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Ниже с учетом новых вкладов в уравнения движения проводится анализ бистабильности в J-агрегатах в 
специальном случае, соответствующем однородной цепочке молекул. В такой цепочке считается, что ин-
дивидуальные характеристики всех молекул не зависят от их расположения, а сама цепочка предполага-
ется бесконечной. 

Таким образом, если в системе уравнений (10)–(13) полагать, что все элементы матрицы плотности 
не зависят от номера молекулы, то мы получим однородную цепочку. Если теперь, в свою очередь, в полу-
ченной системе уравнений положить равными нулю производные по времени, то возникает система урав-
нений для стационарных состояний однородных цепочек. Как показал анализ, выполненный в работах 
[11, 17] без учета многочастичных членов, в таких состояниях возникает бистабильность. Исходя из этого, 
представляет интерес выяснить, каково влияние многочастичных эффектов на проявление бистабильности в 
этих состояниях. Такие исследования удобно проводить для уравнений в безразмерной форме. В нашем 
случае для этого в исходной системе (10)–(13) производится нормировка времени на величину γR : 

,Rt t   

где 

1

2R lk
l k



 
   . 

В соответствии с этим параметры уравнений также нормируются на γR . Эти нормированные па-

раметры будут обозначаться следующим образом:   – нормированная скорость экситон-экситонной ан-

нигиляции;   – отстройка от частоты перехода 1 2 , учитывающая  влияние окружающих молекул;  

  – частота Раби. 
Анализ уравнений без учета многочастичных эффектов показал, что бистабильность  существует в 

достаточно широкой области значений α 0 . Более детальные расчеты показывают, что область сущест-

вования гистерезиса по этому параметру и при 10    достигает значения 40  . На рис. 1 изображе-

ны кривые гистерезисной зависимости населенности второго уровня 0
22ρ  от 2  при 10    и 

α = 0, 1, 5, 10, 15 и 25. Индекс «0» означает стационарное состояние. 
 

 
 

Рис. 1. Бистабильность населенности второго возбужденного уровня при изменении частоты Раби  
без учета многочастичных поправок. Коэффициент экситон-экситонной аннигиляции принимает по порядку 

значения: 0  , 1, 5, 10, 15 и 25; 10    

Однако, как следует из дальнейшего анализа, учет многочастичных вкладов приводит к уменьше-
нию области существования бистабильности. На рис. 2 изображены бистабильные зависимости населен-
ности второго уровня 0

22ρ  от 2  при учете трехчастичных вкладов в случае 10    и различных значе-

ниях параметра  . Из расчетов следует, что с увеличением   области бистабильности сужаются, и она 
исчезает при конечном значении 22,7  . Таким образом, учет многочастичных вкладов в целом приво-
дит к заметному ограничению области существования бистабильности в зависимости от постоянной эк-
ситон-экситонной аннигиляции.  

На рис. 3 изображена зависимость ширины области бистабильности 0
22δρ  (разность значений пра-

вой и левой границ бистабильности на рис. 2) для населенности второго уровня от величин расстройки и 
постоянной экситон-экситонной аннигиляции. Полученная поверхность позволяет определить не только 
область существования самой бистабильности, но в принципе также и наиболее вероятную область па-
раметров, в которой может быть сформирован диссипативный солитон. Пересечение этой поверхности с 
плоскостью 0

22δρ 0 , очевидно, определяет границу существования бистабильности. Эта граница изобра-

жена на рис. 4 в плоскости параметров   и  . При этом кривая 1 ограничивает сверху область бистабиль-
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ности, полученную без учета многочастичных вкладов, а кривая 2 – полученную при учете таких вкладов. 

Вертикальные пунктирные линии соответствуют значениям  , при которых 
d

d





. Согласно расчетам, 

эти значения равны 63,4   и 101,5  . Таким образом, графики наглядно показывают, что при учете 
многочастичных вкладов область существования бистабильности по параметру   в целом сужается. 

 
 

Рис. 2. Бистабильная зависимость населенности второго уровня 0
22ρ  от частоты Раби для стационарных 

состояний. Бистабильность исчезает при значениях скорости экситон-экситонной аннигиляции 22,7   
 

 
 

Рис. 3. Зависимость ширины области бистабильности населенности второго уровня 0 0 0
22 22, 22,δρ ρ ρup dn  , 

где 0 0
22, 22,ρ , ρup dn  – значения для левой и правой границ бистабильности на рис. 2, от коэффициента 

 экситон-экситонной аннигиляции   и расстройки   
 

 
Рис. 4. Границы областей существования бистабильности в плоскости параметров   и  . Кривая 1 

(штриховая линия) ограничивает сверху область бистабильности без учета поправок. Кривая 2 (сплошная 
линия) соответствует случаю учета многочастичных поправок. Этому случаю соответствует также набор 

кривых (слева направо) 0 0
33 22ρ / ρ 0,1; 0, 2 и 0,3  под номером 3 ( 0

33ρ  – населенность третьего уровня). 

Вертикальные пунктирные линии – это границы по параметру  , при стремлении к которым 
d

d





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Фактически при учете трехчастичных взаимодействий граница существования бистабильности про-
являет тенденцию к смещению в сторону меньших констант взаимодействия в механизме экситон-
экситонной аннигиляции. Этот эффект можно трактовать как увеличение эффективности данного механиз-
ма при учете трехчастичных вкладов, что уменьшает требование к величине константы взаимодействия. 
 

Модуляционная неустойчивость однородных режимов резонансного возбуждения молекулярных 
 J-агрегатов 

 

В данном, заключительном разделе работы анализируется модуляционная неустойчивость стацио-
нарных состояний однородных цепочек, исследованных в предыдущем разделе при учете трехчастичных 
вкладов. Целью такого анализа является определение границ областей устойчивости и неустойчивости и 
соотнесение их с границами существования бистабильности. 

Исследование модуляционной неустойчивости проводится в рамках полученной ранее системы 
уравнений (10)–(13). Для однородных цепочек, как упоминалось в предыдущем разделе, все элементы 
одночастичных матриц плотности не зависят от номера молекулы. Следовательно, можно положить: 

( )ρ ρ ( 1, 2,3)k
nn nn n   и kR R . Для стационарных состояний, как это делалось и ранее, используем обо-

значения 0
22ρ и 0R , причем 0 0 0

R JR R i R  , где 0
RR и 0

JR  – вещественная и мнимая части 0R . 

Наличие бистабильности свидетельствует о сильной нелинейности системы по отношению к под-
держивающему излучению и служит признаком возможности формирования в ней диссипативных соли-
тонов [16–20]. Именно в связи с этим необходимо проведение анализа устойчивости и эволюции малых 
возмущений стационарных состояний однородных цепочек. Этот анализ проводится в линейном прибли-
жении. 

В общем виде решение, близкое к стационарному однородному состоянию, можно представить в 
следующей форме: 

   
   

 
 

0
33 33 1

0
22 22 2

0 3

0 4

1
к .с . ,

2
1

к .с . ,
2
1

Re к .с. ,
2
1

Im к .с. .
2

t ikq

t ikq

R t ikq
k

I t ikq
k

k x e

k x e

R R x e

R R x e

 

 

 

 

    

    


   


   


 (14) 

Здесь ix  являются малыми возмущениями стационарных однородных состояний, которые описы-

вают модуляционную неустойчивость системы в случае Re λ > 0. При этом параметр q можно рассматри-
вать как нормированное волновое число возмущения. Из свойств симметрии следует, что, если положить 

πq s , то изменение параметра s достаточно рассматривать лишь в интервале 0 1s  . 

Подстановка (14) в систему (10)–(13) и ее линеаризация по ix  приводят к системе линейных урав-

нений вида 

 
 

 
 

11 1 12 2 13 3 14 4

21 1 22 2 23 3 24 4

31 1 32 2 33 3 34 4

41 1 42 2 43 3 44 4

0,

0,

0,

0.

a x a x a x a x

a x a x a x a x

a x a x a x a x

a x a x a x a x

     


    


    
     

 (15) 

Коэффициенты mna  являются функциями параметров системы, в том числе параметров  ,  ,   

и s. Требование обращения в нуль определителя системы уравнений (15) позволяет найти собственные 
значения  , вещественные части которых определяют нарастание или убывание возмущений, а следова-
тельно, и устойчивость состояний. Указанное требование приводит к алгебраическому уравнению 4-го 
порядка по   с вещественными коэффициентами, так что имеется четыре ветви корней. При этом, если 
при заданных фиксированных значениях параметров стационарных состояний вещественная часть хотя 
бы одного из значений   при каком-либо s в интервале 0 1s   является положительной, то такой ре-
жим является неустойчивым. Ввиду громоздкости вида коэффициентов mna  реален только численный 

анализ (15). 
Проведенный численный анализ устойчивости населенности второго уровня 0

22  в зависимости от 

изменения параметров   и   и фиксированных значениях других параметров показал, что стационар-
ные состояния, отвечающие верхней ветви бистабильной зависимости, всегда устойчивы. В то же время 
состояния, соответствующие средней ветви, как обычно, неустойчивы, и область неустойчивости сущест-
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вует также на нижней ветви бистабильной зависимости. При этом найденная область неустойчивости 
выходит за пределы области бистабильности. 

Результаты данного анализа продемонстрированы на рис. 5, на котором приведено изменение на-
селенности второго уровня в зависимости от частоты Раби при 5   (внутри области бистабильности) и 

25   (вне этой области). На графиках отмечены границы областей неустойчивости. 
 

 
 

Рис. 5. Изменение населенности второго возбужденного уровня в зависимости от частоты Раби при двух 

значениях параметра  ; 10   . В первом случае ( 5  ) наблюдается бистабильность, которая  
исчезает с увеличением   (кривая при 25  ). Сплошная линия соответствует области устойчивости 

стационарных состояний, пунктирная – неустойчивой промежуточной ветви бистабильности,  
штрихпунктирная – области неустойчивости на нижней ветви или же вне области бистабильности.  

Эти области на рисунке разделены кружками 
 

 
Рис. 6. Область неустойчивости (заштрихованная часть графика), соответствующая нижней ветви 

 бистабильной зависимости функции 0
22ρ ( , )  . 1 – границы области существования бистабильности 

 

Наиболее общее представление о границах области неустойчивых стационарных состояний, соот-
ветствующих нижней ветви, можно получить из рис. 6. Этой области соответствует заштрихованный уча-
сток, который располагается не только внутри границ бистабильности, но и выходит за ее пределы. 

Описанное выше явление неустойчивости, а также наблюдавшаяся бистабильность были проана-

лизированы в области параметров   и   при выбранном фиксированном значении отстройки  . Одна-
ко эти явления могут наблюдаться и в области других параметров, в частности, в области параметров  и 

  при фиксированном значении частоты Раби. 
На рис. 7 приведена зависимость населенности второго молекулярного уровня 0

22ρ  от параметра 

,  как и ранее, для двух значений  : для 5   (внутри области бистабильности) и 20   (вне этой 
области). На этих графиках границы, связанные с проявлениями неустойчивости, помечены кружками. 
Анализ показал, что и в данном случае состояния, соответствующие верхней ветви бистабильной зави-
симости, являются устойчивыми, а средней – неустойчивыми. 
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Рис. 7. Изменение населенности второго возбужденного уровня в зависимости от отстройки    

при фиксированных частных значениях параметра  ; 1  . В первом случае ( 5  ) наблюдается  
бистабильность, которая исчезает с увеличением   (кривая при 20  ). Сплошная линия соответствует 

области устойчивости стационарных состояний, пунктирная – неустойчивой промежуточной ветви  
бистабильности, штрихпунктирная линия – области неустойчивости на нижней ветви или же неустойчивым 

состояниям вне области бистабильности. Эти области на рисунке разделены кружками 
 

 
Рис. 8. Область неустойчивости (заштрихованная часть графика), соответствующая нижней ветви  

бистабильной зависимости функции 0
22ρ ( , )  . 1 – границы области существования бистабильности 

 

Область неустойчивости существует также для состояний, соответствующих нижней ветви биста-
бильности, и отчасти для состояний вне границ бистабильной зависимости. Этой области на рис. 8 соот-
ветствует заштрихованный участок поверхности. 

Таким образом, в данном разделе были рассмотрены результаты линейного анализа устойчивости 
стационарных состояний однородных режимов резонансно возбуждаемых молекулярных J-агрегатов с 
учетом трехчастичных взаимодействий молекул. Проведено изучение границ областей устойчивости и 
неустойчивости и их сопоставление с границами существования бистабильности. Эти результаты суще-
ственны для последующего исследования пространственно неоднородных структур в молекулярных це-
почках конечных длин и наносолитонов. 
 

Заключение 
 

В обзоре обобщены результаты исследований, выполненных авторами в рамках трех связанных 
между собой направлений. Впервые получена система уравнений для описания отдельных J-агрегатов с 
учетом многочастичных взаимодействий и парных корреляций между молекулами цепочек. Это позволя-
ет более корректно исследовать свойства J-агрегатов и нелинейные оптические эффекты в этих системах 
при их резонансном возбуждении. Проанализировано влияние трехчастичных взаимодействий на биста-
бильность стационарных состояний однородных цепочек. Показано, что учет трехчастичных взаимодей-
ствий заметно сужает область существования бистабильности и, в частности, сдвигает ее в сторону 
меньших скоростей экситон-экситонной аннигиляции. Проведено исследование модуляционной неустой-
чивости определенных выше стационарных состояний относительно пространственных возмущений в  
J-агрегатах. Найдены области устойчивости и неустойчивости. Проведено сопоставление границ этих 
областей с границами области существования бистабильности. Полученные результаты важны как для 
определения областей параметров, где наиболее вероятно существование устойчивых стационарных со-
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стояний однородных режимов в J-агрегатах, так и для исследования возможности возбуждения диссипа-
тивных солитонов. 

Проведенные исследования позволяют более надежно выделить область параметров, где могут на-
блюдаться существенно нелинейные эффекты, которые можно было бы использовать для создания схем 
молекулярной памяти и, в более широком контексте, для создания устройств оптической логики. 
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