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Abstract

We develop a mean-field electron-vibrational theory of
Frenkel exciton polaritons in organic dye structures. The
theory contains experimentally measured quantities that
make it closely related to experiment, and provides a pos-
sibility of generalization to a nonlinear regime. Between
other things, we explain the additional red shift of the
H-aggregate absorption spectra (that are blue-shifted as a
whole). We apply the theory to experiment on fraction of
a millimeter propagation of Frenkel exciton polaritons in
photoexcited organic nanofibers made of thiacyanine dye.
A good agreement between theory and experiment is ob-
tained.

1. Introduction
Recently organic dye nanofibers demonstrated long-range
Frenkel exciton polariton (EP) propagation at room temper-
ature [1, 2]. EPs are new quasi-particles formed when the
coupling between excitons and photons in condensed mat-
ter is strong. They combine exciton and photon properties.

The long-range Frenkel EPs are formed in organic dye
nanofibers at room temperatures owing to a considerably
larger oscillator strength compared to inorganic semicon-
ductors [1]. To realize such long-range propagation, the
Frenkel EPs should be stable. Their stability is governed
by splitting between two branches of the polariton disper-
sion, the correct calculation of which is of decisive im-
portance. The latter necessitates the proper description of
the Frenkel exciton line shape that is impossible without
taking the electron-vibrational interaction into account (es-
pecially for H-aggregates, as it took place in experiment
[1]). In other words, we needs in an EP theory that takes
electron-vibrational interaction into account in a simple
way and provides a possibility of generalization to a non-
linear regime.

In this work we develop a mean-field electron-
vibrational theory of Frenkel EPs in organic dye struc-
tures and apply it to experiment [1]. Our consideration
is based on the model of the interaction of strong shaped
laser pulse with organic molecules, Refs.[3, 4, 5], extended
to the dipole-dipole intermolecular interactions in the con-
densed matter. These latters results in two options: one
mother - two daughters. The first option correctly describes
the behaviour of the first moment of molecular spectra in
condensed matter, and specifically, the red shift, according

to the Clausius-Mossotti Lorentz-Lorentz (CMLL) mecha-
nism [6]. The second option is related to the dramatic mod-
ification of molecular spectra in condensed matter due to
aggregation of molecules into J- or H-aggregates. The the-
ory contains experimentally measured quantities that makes
it closely related to experiment. Between other things, us-
ing the first option, we explain the additional red shift of
the H-aggregate experimental absorption spectra [7] (that
are blue-shifted as a whole, and the lineshape of which is
described by the second option).

2. Derivation of equations for dipole-dipole
intermolecular interactions in condensed

matter
In this section we shall extend equations for vibrationally
non-equilibrium populations of molecular electronic states
of Refs. [3, 4, 5] to a condensed matter. In this picture
we considered a molecule with two electronic states n =
1 (ground) and 2 (excited) in a solvent described by the
Hamiltonian

H0 =
2∑

n=1

|n⟩ [En +Wn(Q)] ⟨n| (1)

where E2 > E1, En is the energy of state n,Wn(Q) is
the adiabatic Hamiltonian of reservoir R (the vibrational
subsystems of a molecule and a solvent interacting with the
two-level electron system under consideration in state n).
The molecule is affected by electromagnetic field E(t)

E(t) =
1

2
eE(t) exp(−iωt) + c.c. (2)

the frequency of which is close to that of the transition 1 →
2. Here E(t) describes the change of the pulse amplitude in
time, e is unit polarization vector.

Since an absorption spectrum of a large molecule in
condensed matter consists from overlapping vibronic tran-
sitions, we shall single out the contribution from the low
frequency (LF) optically active (OA) vibrations {ωs} to
Wn(Q): Wn(Q) = WnM +Wns where Wns is the sum of
the Hamiltonian governing the nuclear degrees of freedom
of the solvent in the absence of the solute and LFOA in-
tramolecular vibrations, and the part which describes inter-
actions between the solute and the nuclear degrees of free-
dom of the solvent; WnM is the Hamiltonian representing



the nuclear degrees of freedom of the high frequency (HF)
OA vibrations of the solute molecule.

The influence of the vibrational subsystems of a
molecule and a solvent on the electronic transition within
the range of definite vibronic transition related to HFOA
vibration (≈ 1000−1500cm−1) can be described as a mod-
ulation of this transition by LFOA vibrations {ωs} [8]. We
suppose that ~ωs ≪ kBT . Thus {ωs} is an almost clas-
sical system. In accordance with the Franck-Condon prin-
ciple, an optical electronic transition takes place at a fixed
nuclear configuration. Therefore, the quantity u1s(Q) =
W2s(Q) − W1s(Q) − ⟨W2s(Q) − W1s(Q)⟩1 represent-
ing electron-vibration coupling is the disturbance of nu-
clear motion under electronic transition where ⟨⟩n stands
for the trace operation over the reservoir variables in the
electronic state n. Electronic transition relaxation stimu-
lated by LFOA vibrations is described by the correlation
function K(t) = ⟨α(0)α(t)⟩ of the corresponding vibra-
tional disturbance with characteristic attenuation time τs
[9, 10, 11] where α ≡ −u1s/~. The analytic solution
of the problem under consideration has been obtained due
to the presence of a small parameter. For broad vibronic
spectra satisfying the ”slow modulation” limit, we have
σ2sτ

2
s ≫ 1 where σ2s = K(0) is the LFOA vibration

contribution to a second central moment of an absorption
spectrum, the half bandwidth of which is related to σ2s

as ∆ωabs = 2
√
2σ2s ln 2. According to Refs. [10, 11],

the following times are characteristic for the time evolution
of the system under consideration: σ

−1/2
2s < T ′ << τs,

where σ
−1/2
2s and T ′ = (τs/σ2s)

1/3 are the times of re-
versible and irreversible dephasing of the electronic tran-
sition, respectively. The characteristic frequency range of
changing the optical transition probability can be evaluated
as the inverse T ′, i.e. (T ′)−1. Thus, one can consider T ′

as a time of the optical electronic transition. Therefore, the
inequality τs ≫ T ′ implies that the optical transition is in-
stantaneous where relation T ′/τs << 1 plays the role of
a small parameter. This made it possible to describe vi-
brationally non-equilibrium populations in electronic states
1 and 2 ρjj (α, t) (j = 1, 2) by balance equations for the
intense pulse excitation (pulse duration tp > T ′) and solve
the problem [12, 3, 4, 5]. For brevity, we consider here only
one vibronic transition related to a HFOA vibration. Gen-
eralization to the case of a number of vibronic transitions
will be made below.

The equation under discussion were written for the par-
tial density matrix of the system ρjj (α, t) that described
the system distribution in states 1 and 2 with a given value
of α at time t. The complete density matrix averaged
over the stochastic process which modulates the system en-
ergy levels, is obtained by integration of ρij (α, t) over α,
⟨ρ⟩ij (t) =

∫
ρij (α, t) dα, where quantities ⟨ρ⟩jj (t) are

the normalized populations of the corresponding electronic
states: ⟨ρ⟩jj (t) ≡ nj , n1 + n2 = 1. Knowing ρjj (α, t),
one can calculate the positive frequency component of the
polarization P(+)(t) = ND12⟨ρ⟩21 (t), and the suscep-
tibility χ(Ω, t) [3] that enables us to obtain the dielectric

function ε due to relation ε(Ω, t) = 1+4πχ(Ω, t). Here N
is the density of molecules, and D12 is the electronic matrix
element of the dipole moment operator. It is worthy to note
that magnitude ε(Ω, t) does make sense, since it changes
in time slowly with respect to dephasing. In other words,
ε(Ω, t) changes in time slowly with respect to reciprocal
characteristic frequency domain of changing ε(Ω).

Let us include now the dipole-dipole intermolecular in-
teractions in the condensed matter that are described by
Hamiltonian [13, 9] Hint = ~

∑
m ̸=n

Jmnb
†
mbn where Jmn

is the resonant exciton coupling. Let us discuss the contri-
bution of Hamiltonian Ĥint to the change of ρij (α, t) in
time. In other words, we shall generalize Eq.(11) of Ref.[3]
to the dipole-dipole intermolecular interactions in the con-
densed matter. Using the Heisenberg equations of motion,
one obtains that Ĥint gives the following contribution to the
change of the expectation value of excitonic operator bk in
time

d

dt
⟨bk⟩ ∼ i

~
⟨[Ĥint, bk]⟩ ≡

i

~
Tr([Ĥint, bk]ρ)

= −i
∑
n ̸=k

Jkn⟨(n̂k1 − n̂k2)bn⟩ (3)

where n̂k1 = bkb
†
k, and n̂k2 = b†kbk is the exciton pop-

ulation operator. Considering an assembly of identical
molecules, one can write ⟨bk⟩ = ρ21 (α, t) [14] if averaging
in Eq.(3) is carried out using density matrix ρ (α, t). Con-
sider the expectation value ⟨(n̂k1 − n̂k21)bn⟩ = Tr[(n̂k1 −
n̂k2)bnρ (αk, αn, t)] for n ̸= k where αm is the effec-
tive vibrational coordinate of a molecule m (m = k, n).
Due to fast dephasing (see above), it makes sense to ne-
glect all correlations among different molecules [9], and
set ⟨(n̂k1 − n̂k2)bn⟩ = ⟨n̂k1 − n̂k2⟩⟨bn⟩ and correspond-
ingly ρ (αk, αn, t) ≃ ρ (αk, t) ρ (αn, t), i.e. density matrix
ρ (αk, αn, t) is factorized. Here from dimension consid-
eration one expectation value should be calculated using
density matrix ρ (α, t), and another one - using ⟨ρ⟩ (t) =∫
ρ (α, t) dα. Since we sum with respect to n, it would

appear reasonable to integrate with respect to αn. How-
ever, this issue is not so simple. The point is that in addi-
tion to intramolecular vibrations, there is a contribution of
low-frequency intermolecular and solvent coordinates into
effective coordinate α. Because of this, partitioning the
vibrations into αk and αn groups is ambiguous, and the
mean-field approximation gives two options

p⟨b⟩⟨n̂1 − n̂2⟩ =
(

pρ21 (α, t)∆n

p⟨ρ21⟩(t)∆′ (α, t)

)
(4)

where ∆′ (α, t) = ρ11 (α, t)−ρ22 (α, t), p ≡ −
∑

n̸=k Jkn,
∆n ≡ n1 − n2. Below we shall discuss which op-
tion better corresponds to a specific experimental situa-
tion. Consideration based on non-equilibrium Green func-
tions (GF) shows that the terms pρ21 (α, t) and p⟨ρ21⟩(t)
on the right-hand-side of Eq.(4) represent the self-energy,
iΣ21(t), and the terms ∆n and ∆′ (α, t) - the difference of
the ”lesser” GFs for equal time arguments, i~

N [G<
11(t, t) −
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G<
22(t, t)], that are the density matrix, i.e. p⟨b⟩⟨n̂1 − n̂2⟩ =

− ~
NΣ21(t)[G

<
11(t, t) − G<

22(t, t)], respectively. In other
words, for the first line on the right-hand-side of Eq.(4), the
self-energy depends on α and the ”lesser” GFs G<

11(t, t) −
G<

22(t, t) do not. In contrast, for the second line on the
right-hand-side of Eq.(4), the self-energy does not depend
on α and the ”lesser” GFs G<

11(α; t, t)−G<
22(α; t, t) do de-

pend. This yields ∂ρ21 (α, t) /∂t ∼ − i~
NΣ21(t)[G

<
11(t, t)−

G<
22(t, t)]. Adding term ”− i~

NΣ21(t)[G
<
11(t, t)−G<

22(t, t)]”
to the right-hand side of Eq.(9) of Ref.[3] for the non-
diagonal density matrix ρ̃21 (α, t)

∂

∂t
ρ̃21 (α, t) + i (ω21 − ω − α) ρ̃21 (α, t)

≈ i

2~
D21 ·E (t)∆′ (α, t)− i

~
N

Σ̃21(t)[G
<
11(t, t)

−G<
22(t, t)] (5)

where ω21 is the frequency of Franck-Condon transition
1 → 2, ρ̃21 = ρ21 exp (iωt), Σ̃21 = Σ21 exp (iωt) , and
using the procedure described there, we get the extensions
of Eq.(11) of Ref.[3] to the dipole-dipole intermolecular in-
teractions in the condensed matter.

Consider first the case of self-energy depending on ef-
fective vibrational coordinate α (the first line on the right-
hand-side of Eq.(4)) when the main contribution to α is due
to low-frequency intermolecular vibrations and solvent co-
ordinates. Then we obtain Eq.(1) of Ref.[15] (see Appendix
1). In that case, as one can see from Eq.(27) of Appendix
1, the self-energy iΣ21(t) = pρ21 (α, t) results in the fre-
quency shift of spectra ”−p∆n” without changing the line
shapes. One can show that this approach correctly describes
the change of the first moment of optical spectra in the con-
densed matter. Calculations of p for isotropic medium give

p =
4π

3~
|D12|2N > 0 [9, 15] that corresponds to a red

shift, according to the Clausius-Mossotti Lorentz-Lorentz
(CMLL) mechanism [6].

Let us consider the particular case of fast vibrational
relaxation. Physically it means that the equilibrium distri-
butions into the electronic states have had time to be set
during changing the pulse parameters. In that case one gets
the equations for the populations of electronic states n1,2

(see Appendix 1)

dnj

dt
= (−1)

j
σa(ω21)J̃(t)Re[n1W̄a(ω + p∆n)−

−n2W̄f (ω + p∆n)]− (−1)
j n2

T1
(6)

where n1 + n2 = 1, σa is the cross section at the maxi-
mum of the absorption band, J̃(t) is the power density of
exciting radiation, W̄a(f)(ω) = Wa(f)(ω)/Fa,max, Fa,max

is the maximum value of the absorption line (see below),
and we added term ”(−1)

j
n2/T1” taking the lifetime T1

of the excited state into account. Here ”−iWa(f)(ω)” is the
line-shape function of a monomer molecule for the absorp-
tion (fluorescence) for fast vibronic relaxation. In the case

under consideration, it is related to the line-shape function,∫
dα∆′ (α, t) ζ(ω − ω21 + α)/π, by formula

∫ ∞

−∞
dα∆′ (α, t) ζ(ω − ω21 + α)/π

= −i[n1 (t)Wa(ω)− n2 (t)Wf (ω)] (7)

where ζ(ω − ω21 + α) = P
ω−ω21+α − iπδ(ω − ω21 + α),

P is the symbol of the principal value.
The imaginary part of ”−iWa(f)(ω)” with sign mi-

nus, −Im[−iWa(f)(ω)] =ReWa(f)(ω) ≡ Fa(f)(ω),
describes the absorption (fluorescence) line-
shapes of a monomer molecule, and the real part,
Re[−iWa(f)(ω)] =ImWa(f)(ω), describes the correspond-
ing refraction spectra. For the ”slow modulation” limit
considered in the beginning of this section, quantities
Wa(f)(ω) and Fa(f)(ω) are given by Eqs. (30) and (31),
respectively, of Appendix 1.

2.1. Population difference (”lesser” GFs) depending on
effective vibrational coordinate α

Consider now the case when the population difference de-
pends on effective vibrational coordinate α (the second line
on the right-hand-side of Eq.(4); the main contribution to α
is due to intramolecular vibrations). Then using Eq.(24) of
Appendix 1 and Eq.(5), we arrive to equation

∂ρjj (α, t)

∂t
= Ljjρjj (α, t) +

(−1)
j
π

2
∆′ (α, t)

×δ (ω21 − ω − α) |Ωeff (t)|2 (8)

where Ωeff (t) = ΩR(t) + 2p⟨ρ21⟩(t) = ΩR(t) + 2Σ21(t)
is the effective Rabi frequency that can be written as

Ωeff (t) =
ΩR(t)

1 + p
∫
dα∆′ (α, t) ζ(ω − ω21 + α)

, (9)

Here ΩR(t) = (D12 · e)E(t)/~ is the Rabi frequency, op-
erator Ljj describes the diffusion with respect to the coor-
dinate α in the corresponding effective parabolic potential,
Eq.(25) of Appendix 1.

One can see that in contrast to the self-energy de-
pending on effective vibrational coordinate α (see above),
here the self-energy Σ21(t) = −ip⟨ρ21⟩(t) (the sec-
ond line on the right-hand-side of Eq.(4)) results in the
change of both the frequency shift of spectra and their
lineshapes. In that case considering the dense collec-
tion of molecules under the action of one more (weak)
field Ẽ(t) = 1

2eẼ(t) exp(−iΩt) + c.c., one can calcu-
late the susceptibility χ(Ω, t) = P+(Ω, t)/(Ẽ(t)/2) re-
lated to the positive frequency component of the polar-
ization P+ = ND12⟨ρ21⟩(t), and the dielectric function
ε(Ω) = ε0(1 + 4πχ(Ω)) [16] that in our case is given by

ε(Ω, t) = ε0[1−
q
∫
dα∆′ (α, t) ζ(Ω− ω21 + α)

1 + p
∫
dα∆′ (α, t) ζ(Ω− ω21 + α)

]

(10)

3



Here ε0 = n2
0, n0 is the background refractive index of

the medium, q ≡ 4πη
N |D12|2

~
, η = 1/3 for randomly

oriented molecules, and η = 1 for the molecules of the
same orientation.

2.1.1. Line-shape in the fast vibrational relaxation limit

Below we shall see that the approximation based on the
self-energy integrated on the effective vibrational coordi-
nate (the second line on the right-hand-side of Eq.(4)) cor-
rectly describe the exciton spectra. In that case the fast
vibrational relaxation limit should be based on the equi-
librium state of the collective system (molecules coupled
by the dipole-dipole interaction). However, the exciton
wave function in the ground state is the product of the
wave functions of monomers [13] (no intermolecular inter-
actions). Because of this, for the absorption of weak ra-
diation, one should put j = 1 and ∆′ (α, t) = ∆′(0) (α)

in Eqs. (8) and (9) where ∆′(0) (α) = ρ
(0)
11 (α) =

(2πσ2s)
−1/2

exp[−α2/(2σ2s)] is the equilibrium value of
∆′ (α, t) corresponding to the equilibrium value for a
monomer in the ground state, and we retained only terms
that are proportional to |ΩR(t)|2 on the right-hand side of
Eq.(8). The next procedure is similar to that used for ob-
taining Eq.(6) (see Appendix 1). Integrating Eq.(8) using
Green function [12], we obtain an integral equation. Then
integrating both sides of the obtained integral equation with
respect to α, and bearing in mind Eq.(7), we get

dn1

dt
= −σa(ω21)J̃(t)Re

W̄a(ω)

1− ipπWa(ω)
+

n2

T1
(11)

where the term Re{W̄a(ω)/[1− ipπWa(ω)]} describes the
absorption spectrum of molecules susceptible to the dipole-
dipole intermolecular interactions expressed through their
monomer spectra Wa. The calculation results of the ab-
sorption spectra of J-aggregates according to the expression
Re{Wa(ω)/[1− ipπWa(ω)]} are given in Appendix 2.

Touching on how Eq.(11) can be extended to stronger
radiation, one should recognize two limit cases. In the first
case an optical transitions occur near zero quasi-momentum
k ≈ 0. After the light absorption a quasi-equilibrium
is established. However, the luminescence should be res-
onant to the absorption line due to the quasi-momentum
conservation [13]. This case is realized for J-aggregates
[17]. The second case is characterized by a strong electron-
vibrational interaction when the relaxation to the equilib-
rium vibrational configuration in the excited state occurs
before the excitation transfers to the neighboring molecule
[18]. It seems such a case is realized for the H-aggregates
of thiacyanine (TC) dye molecules where a large Stokes
shift between absorption and photoluminescence spectra of
the TC aggregates was observed in the aqueous solution
[19, 20]. Since the description of the H-aggregate spec-
tra necessitates including also the HFOA vibrations and the
mechanism described by Eq.(6) (see Section 3), the exten-
sion to stronger radiation for H-aggregates will be carried
out elsewhere.

Figure 1: Nonlinear absorption spectra (in terms of τs/π)
of the J-aggregate for ∆n = 1 (solid line), ∆n = 0.8
(dotted line), ∆n = 0.6 (dash dotted line), and the cor-
responding monomer absorption spectrum (dashed line) for√
σ2sτs = 3.16 and pτs = 10. Dimensionless parameter is

∆ = τs(ω21 − ω), τs/(2T1) << 1.

For the first case one can put ∆′ (α, t) =

∆n (2πσ2s)
−1/2

exp[−α2/(2σ2s)] in Eqs. (8) and
(9), and we obtain the extension of Eq.(11) to stronger
radiation

dn1

dt
= −σa(ω21)J̃(t)Re

∆nW̄a(ω)

1− ipπ∆nWa(ω)
+

n2

T1
(12)

In Eq.(12) the probability of the light induced transitions
may be of the same order of magnitude as T−1

1 , however,
the first should be smaller than the reciprocal dephasing
time.

The term ”Re ∆nW̄a(ω)
1−ipπ∆nWa(ω)” on the right-hand-side

of Eq.(12) describes a nonlinear absorption. In particu-
lar case of weak radiation when ∆n = 1, this term re-
covers the coherent exciton scattering (CES) approxima-
tion [21, 7, 22]. The latter is well suited to describing
the absorption spectrum lineshape for J-aggregates using
their monomer spectra and the intermolecular interaction
strength that is a fitting parameter. As to the absorp-
tion spectra of H-aggregates, the CES approximation de-
scribes correctly only their lineshapes. The positions of the
H-aggregate spectra calculated in the CES approximation
should be corrected [7]. This issue will be considered in
more details in Section 3, since we apply our theory to the
EPs in H-aggregates of TC dye molecules below.

Fig.1 shows the calculation results of the nonlinear ab-
sorption spectra of J-aggregates according to the expression
Re{∆nWa(ω)/[1−ipπ∆nWa(ω)]} on the right-hand-side

4



of Eq.(12) for different values of the population difference
∆n. The vibrationally equilibrium monomer absorption
spectrum Wa(ω) was calculated using Eq.(36) of Appendix
2. The spectra of Fig.1 demonstrate the saturation effect
accompanied by the blue shift of the spectra when the pop-
ulation difference ∆n diminishes. Such a frequency shift
arises also in the many-body theory of 1D Frenkel excitons
[23] that does not consider the vibrations. In contrast, our
theory does take the vibrations into account that enables us
to correctly describe the lineshape of J-aggregates.

3. Proper description of the lineshape and the
frequency shift of absorption spectra of

H-aggregates
Applying expression Re{Wa(ω)/[1 − ipπWa(ω)]} (see
Section 2.1.1) to the description of the absorption of H-
aggregates, one should take into account also HFOA in-
tramolecular vibrations, in addition to the LFOA vibrations
{ωs} under consideration in our paper. The intramolecular
relaxation related to the OAHF vibrations takes place in a
time shorter than intermolecular relaxation of the low fre-
quency system {ωs} [4, 24, 5]. Therefore, we can consider
the density matrix averaged with respect to the intramolecu-
lar OAHF vibrations: ρns(t) = TrMρnn(t) where the total
density matrix ρnn(t) is factorized, ρnn(t) = ρnMρns(t),
and ρnM = exp(−βWnM )/TrM exp(−βWnM ) is the
equilibrium density matrix of the intramolecular OAHF vi-
brations. Here TrM denotes the operation of taking a trace
over the variables of the intramolecular OAHF vibrations,
β = 1/ (kBT ). Using density matrix ρns, one can obtain
an equation akin to Eq.(11) where the monomer spectrum
is given by

Wa(ω) =
τs
π

exp(−S0)
∞∑
k=0

Sk
0

k!

Φ(1, 1 + xak;σ2sτ
2
s )

xak

(13)
where xak = τs/(2T1) + σ2sτ

2
s + iτs(ω21 − ω + kω0).

Eq.(13) is derived in Appendix 3 for the model of one nor-
mal high frequency intramolecular oscillator of frequency
ω0 whose equilibrium position is shifted under electronic
transition (S0 is the dimensionless parameter of the shift).
Here Φ(1, 1 + xa;σ2sτ

2
s ) is a confluent hypergeometric

function [25] the parameters of which are defined in Ap-
pendix 2.

As we mentioned above, expression Re{Wa(ω)/[1 −
ipπWa(ω)]} corresponds to the CES approximation that
describes well the shape of the absorption spectra of H-
aggregates. However, the spectra calculated in the CES
approximation are blue shifted with respect to experimental
ones [7]. To resolve the problem, the authors of Ref.[7] em-
pirically introduced additional red shift that can be substan-
tiated in our more general theory. Indeed, let us write down
Eq.(5) when both the self-energy (∼ ρ̃21) and the popula-
tion difference depend on the effective vibrational coordi-
nate

Figure 2: Absorption spectra (in terms of τs/π) of the H-
aggregate (solid line), the corresponding monomer (dash
line) and the H-aggregate without the contribution of the
CMLL mechanism (dash dot line) for p1 = 500 cm−1

and p2 = −1500 cm−1 Dimensionless parameter is ∆ =
τs(ω21 − ω).

∂

∂t
ρ̃21 (α, t) + i (ω21 − ω − p1 − α) ρ̃21 (α, t)

= i[
D21 ·E (t)

2~
+ p2

∫
dαρ̃21 (α, t)]ρ

(0)
11 (α) (14)

Using the procedure described in Ref.[3], we get an equa-
tion similar to Eq. (8) (together with Eq.(9)) with the only
difference that ω21 should be replaced by ω21 − p1, and p -
by p2

∂ρ11 (α, t)

∂t
=

−π
2 ρ

(0)
11 (α) |ΩR(t)|2δ (ω21 − ω − p1 − α)∣∣∣1 + p2
∫
dαρ

(0)
11 (α) ζ(ω + p1 − ω21 + α)

∣∣∣2
+L11ρ11 (α, t) (15)

Then similar to Eq.(11), we obtain

dn1

dt
= −σa(ω21)J̃(t)Re

W̄a(ω + p1)

1− ip2πWa(ω + p1)
+

n2

T1

(16)
where the term Re{W̄a(ω + p1)/[1 − ip2πWa(ω + p1)]}
describes the absorption spectrum of molecules susceptible
to the dipole-dipole intermolecular interactions expressed
through their monomer spectra Wa(ω+ p1), Eq.(13). Fig.2
shows the calculation results of the absorption spectrum of
an H-aggregate according to the expression Re{Wa(ω +
p1)/[1 − ip2πWa(ω + p1)]} on the right-hand side of
Eq.(16) and Eq.(13) (solid line), and its comparison with
the monomer spectrum ReWa(ω) (dash line) and the spec-
trum of H-aggregate, Re{Wa(ω)/[1 − ip2πWa(ω)]}, cal-
culated without the contribution of the CMLL mechanism
(dash dot line). The values of parameters are found by fit-
ting the experimental spectrum of the linear absorption of
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LD690 in methanol [5]: τs = 10−13s, kBT = 210 cm−1,
~ωst/(2kBT ) = 1.99, S0 = 0.454, ω0 = 1130 cm−1,
σ2s = ωstkBT/~. The spectra presented in Fig.2 manifest
that though the shape of the H-aggregate spectrum is fully
described by the self-energy not depending on the effective
vibrational coordinate, its position (including the additional
red shift of the experimental spectra of H-aggregates [7])
may be correctly described only taking the CMLL mecha-
nism into account. In other words, our more general theory
enables us to describe both the shape and the position of the
experimental spectra of H-aggregates due to the self-energy
and the population difference (”lesser” GFs) both depend-
ing on the effective vibrational coordinate that leads to their
frequency dependence. This can be understood as follows.
The frequency dependent ”lesser” GFs corresponding to the
CES approximation describe well the spectral shapes of H-
aggregates. The latters can interact with each other by the
dipole-dipole interaction leading to the CMLL red shift that
is described by the frequency dependent self-energy.

In the case under consideration Eq.(10) for the dielectric
function becomes

ε(ω) = ε0[1 +
iqπWa(ω + p1)

1− iπp2Wa(ω + p1)
] (17)

where we put
∫∞
−∞ dα∆′(0) (α) ζ(ω − ω21 + p1 + α) =

−iπWa(ω + p1) for the vibrational equilibrium in the
ground state.

4. Application to the exciton-polariton
experiment

The theory developed in Section 3 properly describes both
the lineshape and the frequency shift of the absorption spec-
tra of H-aggregates. Therefore, it can be applied to the ex-
periment on fraction of a millimeter propagation of EPs in
photoexcited fiber-shaped H-aggregates of TC dye at room
temperature [1].

The transverse eigenmodes of the medium are obtained
from the dispersion equation [16]

c2k2(ω) = ω2ε(ω) (18)

where dielectric function ε(ω) is given by Eq.(17) and de-
pends on the monomer spectra Wa.

Fig. 3 shows the experimental absorption lineshape
of TC monomer solution prepared by dissolving TC dye
in methanol [19] (top), and its theoretical description by
ReWa, Eq.(13), (bottom). Good agreement is observed
with the values of parameters ω21 = 23810 cm−1, 1/τs =
75 cm−1, ω0τs = 20, S0 = 0.454, σ2sτ

2
s = 80 obtained by

comparison between experimental and theoretical curves.
The monomer spectrum found, Wa, enables us to calcu-

late the aggregate absorption spectrum according to the for-
mula Re{Wa(ω+p1)/[1−ip2πWa(ω+p1)]} (see Eqs.(16)
and (17)) shown in Fig.4. Again good agreement between
theoretical and experimental spectra is observed with the
values of parameters p1τs = 4, p2τs = −7 obtained by
comparison between experimental and theoretical curves.

Figure 3: Experimental absorption lineshape of TC
monomer solution prepared by dissolving TC dye in
methanol [19] (top), and its theoretical description (in terms
of τs/π) by ReWa, Eq.(13), (bottom). Dimensionless pa-
rameter is δ = −∆ = τs(ω − ω21).

We did not make additional fitting since experimental ab-
sorption spectra of TC aggregates and monomers were mea-
sured in different solvents [19] (see caption to Fig.4).

4.1. Polariton dispersion

Let us analyze Eq.(18) where the dielectric function is de-
termined by Eq.(17) and depends on the aggregate spec-
trum, Wa(ω + p1)/[1 − ip2πWa(ω + p1)]. The parame-
ters of the aggregate spectrum were found above. In order
to satisfy Eq.(18), the wave number k should be complex
k = k′ + ik′′. Then using Eq.(18), we get for the real and
imaginary part of k

k′
c

n0
= ωRe

√
1 + iπq

Wa(ω + p1)

1− iπp2Wa(ω + p1)
(19)

and

k′′
c

n0
= ωIm

√
1 + iπq

Wa(ω + p1)

1− iπp2Wa(ω + p1)
, (20)

respectively. Fig.5 shows the Frenkel EP dispersion calcu-
lated using Eqs.(19) and (20).

To give physical insight into the Frenkel EP dispersion,
we shall calculate also the dispersion outside the resonance
when k′′ ≈ 0. In that case Eq.(18) leads to the undamped
polariton modes

k′
c

n0
≈ ω

√
1− πqIm

Wa(ω + p1)

1− iπp2Wa(ω + p1)
(21)

6



Figure 4: Experimental absorption and photoluminescence
spectra of TC aggregates and monomers [19] (top), and
theoretical description of aggregate absorption (in terms of
τs/π) (bottom). In the top solid curve represents spectra
of the aqueous solution containing TC aggregates; dashed
curve, spectra of a monomer solution prepared by dissolv-
ing TC dye in methanol. In the bottom solid curve repre-
sents the spectrum of an aggregate; dashed curve - spec-
trum of a monomer. Dimensionless parameter δ = −∆ =
τs(ω − ω21) increases when the wavelength decreases.

Figure 5: Frenkel EP dispersion for real (solid line) and
imaginary (dashed line) part of the wave number k calcu-
lated with Eqs.(19) and (20), respectively, when qτs = 84.
Other parameters are identical to those of the bottom of
Fig.3. k is in units of c/(ω21n0). Dimensionless param-
eter is δ = τs(ω − ω21). Circles show the position of the
fluorescence spectrum of a nanofiber.

Taking spectrum Wa(ω) to be centered on ω = ωa and to
have a finite width Γ, it is clear from the dispersion relation
[22] that Wa(ω) ∼ (i/π)/(ω − ωa) for |ω − ωa| >> Γ,
and we get

k′
c

n0
≈ ω

√
ω − (ωa − p1 − p2)− q

ω − (ωa − p1 − p2)
(22)

Eq.(22) leads to two branches of the polariton dispersion
shown in Fig.5, namely, the lower branch for ω < ωa−p1−
p2, and the upper branch for ω > ωa − p1 − p2. For ω →
ωa − p1 − p2 the wavenumber diverges, k′ → ∞. No solu-
tion of Eq.(22) exists for frequences between ωa − p1 − p2
and (ωa−p1−p2)+ q. In other words, there is a forbidden
gap between ωa−p1−p2 and (ωa−p1−p2)+q separating
the lower and upper polariton branch. However, in the gap
range more precise formulas, Eqs.(19) and (20), should be
used, and the polariton dispersion shows the leaky part in
the splitting range between two branches, Fig.5.

From Eq.(22) we get for low frequencies, ω << ωa −
p1 − p2, a photon-like dispersion

ω ≃ ck′

n0

√
1 + q/(ωa − p1 − p2)

(23)

with a light velocity smaller than c/n0.
From the above discussion, it is evident that parameter

q = 4π
~ ηN |D12|2 defines the separation between the lower

and upper polariton branch. For the molecules of the same
orientation (η = 1) that corresponds to experiment [1], and
D12 ∼ 10−17CGSE, N = 1021 cm−3, one obtains the
evaluation q ≃ 6322 cm−1. This value agrees with the
measurements of Ref.[1]. The position of the fluorescence
spectrum of a nanofiber that is in the range of ∼ 2.5 eV
is shown as circles in Fig.5. One can see that it is located
in the range where Imk ≈ 0, and it is out of the splitting
range under discussion. That is why the fluorescence was
amplified well in experiment [1].

Fig.6 shows the real part of the group refraction index
ng(ω) = n(ω) + ωdn(ω)/dω as a function of frequency
where n(ω) = (c/ω)k(ω) is the phase refraction index.
The curve of Fig.6 agrees with the experimental curve of
Fig.2a of Ref.[1]. Both curves give the same value Reng ≈
7 at the position of the fluorescence spectrum of a nanofiber
(∼ 2.5 eV).

5. Conclusion
In this work we have developed a mean-field electron-
vibrational theory of Frenkel EPs in organic dye structures.
Our consideration is based on the model of the interac-
tion of strong shaped laser pulse with organic molecules,
Refs.[3, 4, 5], extended to the dipole-dipole intermolecular
interactions in the condensed matter. We show that such
a generalization can describe both a red shift of the res-
onance frequency of isolated molecules, according to the
CMLL mechanism [6], and the wide variations of their
spectra related to the aggregation of molecules into J- or H-
aggregates. In particular case of weak radiation we recover

7



Figure 6: Real part of the group refraction index ng for
n0 = 1.5. Other parameters are identical to those of Figs.
3 and 5. Circle shows the position of the fluorescence spec-
trum of a nanofiber. Parameter δ = τs(ω − ω21).

the CES approximation [21, 7, 22]. We show that the ex-
perimental absorption spectra of H-aggregates may be cor-
rectly described only if one takes both mechanisms into ac-
count. Our theory contains experimentally measured quan-
tities that makes it closely related to experiment, and pro-
vides a possibility of generalization to a nonlinear regime.

We have applied the theory to experiment on fraction
of a millimeter propagation of Frenkel EPs in photoexcited
organic nanofibers made of thiacyanine dye [1]. A good
agreement between theory and experiment is obtained. The
theory can be also applied to Frenkel EPs in organic micro-
cavities [26] and to plexcitonics [27].
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6. Appendix 1

In the presence of the dipole-dipole intermolecular interac-
tions in the condensed matter Eq.(6) of Ref. [3] describ-
ing vibrationally non-equilibrium populations in electronic
states j = 1, 2 for the exponential correlation function
K(t)/K(0) ≡ S(t) = exp(−|t|/τs) can be written as

∂

∂t
ρjj (α, t) =

−i

~
[H0 (α) +Hint −D ·E (t) , ρ (α, t)]jj

+Ljjρjj (α, t) (24)

where j = 1, 2, and we added the term Hint into the Hamil-
tonian; the operator Ljj is determined by the equation:

Ljj = τ−1
s [1 + (α− δj2ωst)

∂

∂ (α− δj2ωst)
+

+σ2s
∂2

∂ (α− δj2ωst)
2 ], (25)

describes the diffusion with respect to the coordinate α
in the corresponding effective parabolic potential Uj(α),
δij is the Kronecker delta, ωst = β~σ2s is the Stokes
shift of the equilibrium absorption and luminescence spec-
tra, β = 1/kBT . In the absence of the dipole-dipole in-
termolecular interactions in the condensed matter, Hint,
Eq.(24) is reduced to Eq.(11) of Ref.[3].

Consider first the case of self-energy depending on ef-
fective vibrational coordinate α (the first line on the right-
hand-side of Eq.(4)) when the main contribution to α is due
to low-frequency intermolecular vibrations and solvent co-
ordinates. Then Eq.(5) becomes

∂

∂t
ρ̃21 (α, t) + i (ω21 − ω − p∆n− α) ρ̃21 (α, t)

≈ i

2~
D21 ·E (t)∆′ (α, t) (26)

Solving Eq.(26) for ρ̃21 (α, t) and substituting for the cor-
responding expression in Eq.(24), we we arrive to equation

∂ρjj (α, t)

∂t
= Ljjρjj (α, t) +

(−1)
j
π

2
∆′ (α, t) |ΩR(t)|2 ×

×δ[ω21 − p∆n− ω − α] (27)

that was obtained in Ref.[15]. Here ω21 is the frequency of
Franck-Condon transition 1 → 2, ΩR(t) = (D12 ·e)E(t)/~
is the Rabi frequency, D12 is the electronic matrix element
of the dipole moment operator. Integration of Eq.(27) is
achieved by the Green’s function [12]. Then integrating
both sides of the obtained integral equation with respect to
α, we get

dnj

dt
= (−1)

j π

2
|ΩR(t)|2∆′ (ω21 − p∆n− ω, t) (28)

Let us consider the particular case of fast vibrational re-
laxation when one can put the normalized correlation func-
tion S (t− t′) ≡ K (t− t′) /K (0) equal to zero. Phys-
ically it means that the equilibrium distributions into the
electronic states have had time to be set during changing
the pulse parameters. Bearing in mind that for fast vibronic
relaxation

∆′ (α, t) =
n1 (t)

(2πσ2s)
1/2

exp(− α2

2σ2s
)−

− n2 (t)

(2πσ2s)
1/2

exp[− (α− ωst)
2

2σ2s
], (29)

substituting the last equation into Eq.(28), one gets Eq.(6)
of the main text. The latter contains the line-shape functions
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of a monomer molecule for the absorption (fluorescence)
for fast vibronic relaxation, ”−iWa(f)(ω)”. For the ”slow
modulation” limit considered in the beginning of Section 2,
these quantities are given by [15]

Wa(f)(ω) =

√
1

2πσ2s
w(

ω − ω21 + δa(f),fωst√
2σ2s

) (30)

where w(z) = exp(−z2)[1 + ierfi(z)] is the probability in-
tegral of a complex argument [25], and the absorption (flu-
orescence) lineshapes ReWa(f)(ω) ≡ Fa(f)(ω) are given
by

Fa(f)(ω) =

√
1

2πσ2s
exp[−

(
ω21 − ω − δa(f),fωst

)2
2σ2s

]

(31)
In the case of the Gaussian modulation of the electronic

transition by the vibrations the absorption lineshape is given
by [28, 9, 8]

Fa(ω) =
1

π
Re

∫ ∞

0

exp[i(ω − ω21)t+ g(t)]dt (32)

where

g(t) = −
∫ t

0

dt′(t− t′)K(t′) (33)

is the logarithm of the characteristic function of the spec-
trum of single-photon absorption after substraction of a
term which is linear with respect to t and determines the
first moment of the spectrum, K(t) is the correlation func-
tion. Eq.(32) can be used in general case when the ”slow
modulation” limit is not realized. Then the monomer spec-
trum is given by

Wa(ω) =
1

π

∫ ∞

0

exp[i(ω − ω21)t+ g(t)]dt (34)

For the exponential correlation function Ks(t) =
σ2s exp(−|t|/τs), we get

gs(t) = −σ2sτ
2
s [exp(−t/τs) +

t

τs
− 1] (35)

that leads to Eq.(36) of Appendix 2.

7. Appendix 2. Description of the absorption
of J-aggregates

Applying expression Re{W̄a(ω)/[1 − ipπWa(ω)]} on the
right-hand-side of Eq.(11) to the description of the absorp-
tion of J-aggregates, one should take into account that the
Gaussian shape of the monomer absorption spectrum ob-
tained in the ”slow modulation” limit, Eq.(31), is correct
only near the absorption maximum. The wings decline
much slower as (ω21 − ω)

−4 [29]. At the same time, the
expression under discussion has a pole, giving strong ab-
sorption, when 1/(pπ) = −ImWa(ω). If parameter of the
dipole-dipole intermolecular interaction p is rather large,
the pole may be at a large distance from the absorption
band maximum where the ”slow modulation” limit breaks

down. This means one should use exact expression for the
monomer spectrum Wa that is not limited by the ”slow
modulation” approximation, and properly describes both
the central spectrum region and its wings. The exact calcu-
lation of the vibrationally equilibrium monomer spectrum
for the Gaussian-Markovian modulation with the exponen-
tial correlation function S(t) = exp(−|t|/τs) gives [29, 28]
(see Eqs.(34) and (35))

Wa(ω) =
τs
π

Φ(1, 1 + xa;σ2sτ
2
s )

xa
(36)

where xa = τs/(2T1) + σ2sτ
2
s + iτs(ω21 − ω), Φ(1, 1 +

xa;σ2sτ
2
s ) is a confluent hypergeometric function [25].

Eq.(36) is used for calculating the nonlinear absorption
spectra of J-aggregates in Section 2.1.1.

8. Appendix 3. Description of the absorption
of H-aggregates

To describe the absorption of H-aggregates, one should
take also HFOA intramolecular vibrations into account,
in addition to the LFOA vibrations {ωs}. The extension
of Eq.(11) to the presence of the HFOA vibrations car-
ried out in Section 3, enables us to use previous expres-
sion Re{Wa(ω)/[1 − ipπWa(ω)]} (see Section2.1.1) for
the description of the absorption of H-aggregates where
the monomer spectrum Wa should include the contribution
from the HFOA intramolecular vibrations. We will con-
sider one normal high frequency intramolecular oscillator
of frequency ω0 whose equilibrium position is shifted un-
der electronic transition. Its characteristic function fαM (t)
is determined by the following expression [4]:

fαM (t) = exp(−S0 coth θ0)

∞∑
k=−∞

Ik(S0/ sinh θ0)

× exp[k(θ0 + iω0t)] (37)

where S0 is the dimensionless parameter of the shift, θ0 =
~ω0/(2kBT ), In(x) is the modified Bessel function of first
kind [25]. Then Wa(ω) can be written as

Wa(ω) =
1

π

∫ ∞

0

f∗
αM (t) exp[i(ω − ω21)t+ gs(t)]dt

=

∞∑
k=−∞

exp(−S0 coth θ0 + kθ0)

π
Ik(

S0

sinh θ0
)

×
∫ ∞

0

exp[i(ω − kω0 − ω21)t+ gs(t)]dt

where gs(t) is given by Eq.(35) of Appendix 1. Integrat-
ing with respect to t, one gets Eq.(13) of the main text for
θ0 >> 1.
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