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Solvent-Controlled Theory Analysis of Chirped Pulse Excitation of Molecules in Solutions
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A simple and physically clear approach to the interaction of intense chirped pulses with large molecules in
solutions is developed: time-dependent rate equations for integral populations of electronic molecular states.
For weak interaction, the time-dependent transition rates have a form of the Marcus electron-transfer rate.
For larger interactions, the transition rates take into account the saturation effect similar to the transition rates
in the solvent-controlled theory of electron-transfer reactions. The developed theory is a good approximation
to a more sophisticated treatmedt Chem. Phys1998 109, 4523) which reproduces the effects observed in
recent chirped pulse experiments.

I. Introduction electron-transfer reactions under strong interaction (solvent-

The possibility of controlling molecular dynamics using controlled limit)-3¢ Really, one can consider an electronic
properly tailored pulses has been the subject of intensive studiesPPtical transition as an electron-transfer reaction between
in the past few years:19 Ultrashort pulses intrinsically consist Photonic replication” 1 of the ground electronic state 1 and
of a broad range of frequency components. The relative phasethe excited electronic state 2 (or between state 1 and “photonic
of these frequency components can be systematically Changed(epl|cat|.on" 2.of. state 2) induced by interaction with electro-
by introducing positive or negative linear chirp. Chirped pulses Magnetic radiation of frequenay?>2*(see Figure 1)
can selectively excite coherent wave packet motion either on 1
the ground electronic potential energy surface of a molecule or E(t) = EE(t) exp(—iwt) + c.c. Q)
on the excited electronic potential energy surface. In particular,

a negatively chirped (NC) pulse creates a nonstationary ground-For chirped pulse excitation the field amplitude can be
state component, while a positively chirped (PC) pulse dis- yepresented in the form:

criminates against #*17 This property of chirped pulses is _ R

essentially enhanced by going beyond the perturbative regime E(t) = E(t) explg(t)) (2)
due to the multiphoton processes of exciting molecifés. ) _ )

The effects of varying the chirp and intensity of an ultrashort WhereE(t) andy(t) are real functions of time, angl(t) describes
pulse exciting dye molecules in liquid solutions have been the change of the pulse phase in a timen this case, the
investigated experimentally by Cerullo, Bardeen, and Shank, “photonic replications” move verucally due to the variation of
et al.24 Bardeen and Wilson, et &°,and Huppert et &t This the pulse frequency(t) = o — dg/dt with the time. In the last
work is devoted to the analysis of such chirped experiments. €8S€ an electronic optical transition can be considered as an

The interaction of strong radiation (and especially intense €lectron-transfer reaction between a “moving photonic replica-
chirped pulses) with large molecules in solutions is rather com- _tlon” and_the corresponding term occurring at their instantaneous
plex problem. This problem involves two types of nonpertur- intersectior?® The problem is reduced to the solution of the
bative interactions: light-matter and relaxation (non-Markovian) integral equation for the difference of vibrationally nonequlib-
ones23Therefore, the majority of nonperturbative light-matter "um populations in the ground 1 and excited 2 electronic states
descriptions was carried out by numerical solving the corre- (S€€ €q 7 below). ) _
sponding sets of equations for molecular systems noncou- However,. th_e electron transfer for strong interaction (§olvent-
pled"14.17.24253nd coupled?” with a dissipative environment. ~ controlled limit) can be described by the rate equations for

However, the ligh-matter interaction for large molecules in integral populations of electronic states |f_the activation energies
solutions is characterized by fast electronic depha&itigallows Ea are large®®*3 It would be interesting to study such a
us to simplify the problem by considering only the equations POSSibility also for optical transitions excited by strong chirped
for density matrix elements diagonal with respect to electronic PUlses because just the integral excited-state population is
indices?223.29]t is worthy to note that in spite of the fast elec- mea_ls_ured in experiments on the mtegrated fluoresc@r?e_m
tronic dephasing approximation, such an approach does take2ddition, the rate equations are simpler than the integral
into account vibrational coherences within both the ground and €duation’ This is a nontrivial problem for the excitation by
excited electronic states. A similar approach to the spectroscopychirped pulses because the activation energy is changed during
of H-bonds in a strong infrared field has been proposed by the pulse action (“moving” potentials).

Burshtein et apo-32 Really, according to Marcus theory of the (free) energy gap

In essence, approa@?32%for strong pulse interaction with (AE) law for the electron-transfer reactiof#s¢:38.3% = A exp-

large molecules in solutions is closely related to the theory of (—BEa), whereEa = (E; — AE)74E; andE, are the activation
and the solvent reorganization energy, respectiyehy, 1/kgT.

*To whom correspondence should be addressed. E-mail: fainberg@ |n the photon replica picturé294041the frequency detuning
barley.cteh.ac.il. | ’ .
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Figure 1. Effective potentials corresponding to electronic states 1 and
2 and their “photonic replications”.
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Figure 2. “Normal” (a) and “inverted” (b) regions for interactions
with chirped pulses.

and the half a Stokes shifitvs/2 play the roles oAE andE;,
respectively, for the optical transitions in the field of strong
chirped pulses, i.e AE(t) = Alw(t) — wg']] Er = hwsf2 (see
Figure 1). Therefore, one can realize all the Marcus regions in
one experiment with chirped pulses: the “normal region” when
Aw(t) < wsf2, the “activationless region” whehw(t) = ws/2

and the “inverted region” wheAw(t) > ws/2 (see Figure 2).

Fainberg and Narbaev

In section lll, we obtain an expression for the absorption
spectrum of intense phase modulated pulses, using the developed
approximation. In section IV, we summarize our results. In the
Appendices, we confront our approach with others and check
our results by comparing them with those corresponding to long
time limit for rectangular pulses without chirp.

Il. Rate Equations for Integral Populations of Electronic
States

Let us consider a molecule with two electronic states 1
and 2 in a solvent described by the Hamiltonian

2
Ho= ) InlE, + W,(Q)]

n=

®3)

whereE, > Ej, E, is the energy of state, W,,(Q) is the adiabatic
Hamiltonian of reservoiRR (the vibrational subsystems of a
molecule and a solvent interacting with the two-level electron
system under consideration in sta)eThe molecule is affected

by electromagnetic radiation of a chirped pulse presented by
egs 1 and 2.

The influence of the vibrational subsystems of a molecule
and a solvent on the electronic transition within the range of
definite vibronic transition 0— k related to high frequency
optically active (OA) vibration £1000-1500 cnt?) can be
described as a modulation of this transition by low frequency
(LF) OA vibrations{ws}.*3%6 We suppose thadtws < kgT.
Thus{wg is an almost classical system. In accordance with
the Franck-Condon principle, an optical electronic transition
takes place at a fixed nuclear configuration. Therefore, the
quantity V(Q) = Wx(Q) — Wi(Q) is the disturbance of nuclear
motion under electronic transition. A reduced description is
convenient to use, taking into consideration only a partial set
of coordinates related to optically active modes which give a
contribution toV. The effect of the remaining modes can be
introduced through a random force and friction in the Langevin
equationt” Considering damping as a random perturbation by
the diffusional Markovian process in the configuration coordi-
nate spacey, the equations for the diagonal elements of the
density matrix of the system under consideration can be written
in the form29:40.48.49

prn(@d = Q) + (~1) iz JyDE I 3 1V Ia0all
x G (gt = X,0,(X))[12(0(X),X) — pox(0(X).X¥)] (4)

wheren = 1, 2; D is the dipole moment operator of a solute
molecule,V'(g) = dV(g)/dglq=q, andg;(x) are the solutions of
the equation

AE(X) — V(@) =0 ®)

The quantities)(X) are the intersections of the moving “photonic

Interactions with phase modulated pulses can be used to checkeplications” with the corresponding ter#fsp$; = (E; — Er)/
the Marcus “free energy gap” law and the theories of the solvent- A. In eq 4,p(°)(q) is the nonperturbated density matrix, aByg-

controlled reactiong336:39
In this work, we obtain time-dependent rate equations for
integral populations of electronic states of a large molecule in

a solution excited with a strong chirped pulse. Our approach is

(qt — x;qi(;g) is the Green function describing diffusion in

harmonic potential&)n(q) = E, + Y203(q — Onod)?, Onz2 is the
Kronecker delta. For such potential¢g) = E, — @?dq.
The normalized populations of the electronic states can be

different from time-dependent rate equations, developed by obtained by integration g.(q,t) overq:

Bardeen et at?2 A short comparison of their approach with ours
is given in Appendix A. The outline of the paper is as follows.
In section Il, we obtain rate equations for integral populations

n(t) = f pi(@t) dg (6)

of electronic states and calculate time-dependent transition rateswheren; + n, = 1.
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We can obtain an integral equation for the nonequilibrium The quantity W)5'\(t) = oa(w21) J(t) exp[-BEa(t)] is the
population difference corresponding to the coording(® = probability of the “nonadiabatic” transition. It is equal W
—(@%d)AE(t) — E]:2940 (t) for small pulse intensitiesM'(t) can be considered as a

. time-dependent form of the Marcus electron-transferi&itde
A(t) = exp[—PEx (V)] — 0(w,) ﬂ)dt JAENAEHR(LE) - second term in the denominator of eq 15 describes the saturation
7

effect.
o Figure 3 shows a good fit of the solutions of egs 14, 15, and
where A(t) = hd~2d™* /2710,d p11(Gi(1).1) — p22AGi(D).1)], oar 16 (curves 1) to those of integral eq 7 in combination with eq

(w21) is the cross section at the maximum of the absorption g (curves 4) which describe recent chirped pulse experi-
band (21 = wy; + wsf2), J(t) is the power density of the  ments2940 Curves 4 were calculated in the same approach as

exciting radiation, and the quantity those of Figure 5 of ref 29.
) The calculation results were obtained for a Gaussian pulse
R(t,t’) — [1 _ 52(t _ t')] —1/2 Z exq _ﬁ[Ei/IZ(t) _ Eijz(t') of the Shape
I~ 1 .
x St— )L — St —t)]} (8) E(t) = E, exr{— (0% = i)t = t9)° (17)

describes the contributions from induced absorptjea {) and
induced emissionj (= 2) to A(t). Here S(t) = exp(—|t|/zs) is
the normalized correlation function of a Markovian process
corresponding to diffusion in electronic states 1 an@d2,is
the contribution of the low frequency optically active vibrations
to a second central moment of the equilibrium absorption

Experimentally, chirped pulses are obtained by changing the
separation of pulse compression gratings. In the last case the
parameter® andu are determined by the formul&$2®

0° = 21,5 + 20" (w)1,d? 1 = —40" (o) [1,5' +

spectrumE; ) = [AE(t) F EJ/(2E?), Ex(t) is the activa- 40" (w)] 7t (18)
tion energy in electronic stafje The quantityA(t) enables us
to calculate the populations of electronic statgt?° wherezpo = t,/v'2In2 determines the duration of a transform
_ . limited pulsetp, and @' (w) = ®" (v)/(47?) is the phase term.
nj(t) = 511 + (_1)]%(0)21) f;)J(t')A(t') at’ 9) Calculation of Time-Dependent Probability of Electronic

Transition. Let us evaluate the integral on the right-hand side
Fort — t' — o the quantityR(t,t ) on the right-hand side of ~ ©f g 15. We will consider pulses with linear chirpipi/dt =
eq 7 relaxes to the value u(t — )%

2

1
RO =3 expl-AEy0) (10) E() = E() exple()) = EO exilZiut — ] (19)
P

which include a pulse of the form (17) as a special case. Since
the quantityR'(t,t ') is a rapidly changing function af— t' for

" — n_ large activation energieSa; » > ks T, the main contribution to
rLr) =R = RO (1) it give the time intervalst(— t ')/zs < 1. For such conditiort8

Therefore, a new quantity is conveniently introduced

which relaxes to zero far— t' — . Then the integral on the

right-hand side of eq 7 can be written in the form: t—t"
—21 EAJ-(t + 1)

R(tt") ~ (20)

[dtIE)AE)REE) = R() [ dt "I )AL +

j;tdt’J(t DA )r(tt’) (12) Equation 20 enables us to strictly specify the criterion for
obtaining egs 13, 14, 15, and 20. Sinte—(t')/7s < 1, then
In the vicinity of the pointt* = t, the quantityR (tt') displays the activation energieBa; (s + t) must be much larger than
the o-shaped behavid¥. In addition, one can see from eqs 8 2kgT:
and 11 that for the activation energigs > > kgT, the quantity
r(t,t") is a rapidly changing function df— t'. Therefore, BEA(t T 19/2>1 (22)

j;t dt "It A )r(tt) ~ JLA®R) fot dt'r(tt’) (13) Using egs 15 and 20 and integratiRgt,t ') with respect ta '
between the limits" = 0 andt’ = t, we obtain
and we obtain from egs 9, 7, 12, and 13 time-dependent rate

equations for the integral populations of electronic states Wi,(t) =
dn,, Wiz ()
d_t’ = £[Wyy(t)n, — Wy,(t)ny] (14) , . i \
where 1+ Oa(wZI)‘](t)Ts ]Z ﬂEAJ(TTS) erf \/Z_-L—SEAj(t + ”L’S)
Wiyo(t) = WS OK 1 + 0(0,) 0L [, R(EL) dt” — tR(0)]} (22)
(15) where erfg) is the error functio®! Figure 3 shows the excited-

state populatiom, after the completion of pulse action as a
Wy (t) = Wi(t) exp[-BAE(t)] (16) function of the phase term calculated by eqgs 14, 16, 17, 18,
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Figure 3. The excited-state population after the completion of the pulse action as a functiombd{v). n, is calculated by the solution of egs

14 and 16 using different approachesit(t): 1, eq 15; 2, eq 22; 3, eqs

23 and 24; 4, solution of eqs 7 and 9. The pardmeteksT) = 3.38

(parts a-c) is close to that of the laser dye LD690 in methatand equal to 6 for parts-¢f. Other parameters are(— wz1)/ws = 0.5 (parts a
and d), O (parts b and e);0.5 (parts ¢ and f)ga(w21) Imatp = 2.5, 750 = 11 fs. Insets to parts-ac and &-f: Equilibrium spectra of the absorption
(A) and the emissionE); the arrows show the relative positions of the carrier frequency

and 22 (curves 2). One can see that in general eq 22 can baletuning with respect to the carrier frequenoy This fit is

used for qualitative description of th® dependence on the
phase term, and in a number of cases for the quantitative
description [see Figure 3, panels ¢ and f, @f(v) < 0 and
Figure 3d for®'"(v) > 0].

We can present probabiliti;o(t) in the form which is similar
to that of the electron-transfer reactiofi§® Bearing in mind

that erf/ (BU/2tE(t+ty)) = 1 for conditions (21), we obtain

Wi(t) =
Wiz (®

23
1+ 40 (w,) (V)7 /7l (BE,) {1 — [AE(z,+ )/E]} (23)

for the normal region|AE(zs + t)| < E), and

le(t) =
WiL'()
1+ 40, (0,) ()7 /TEJBIAE(T, + )] {1 — [E/AE(r,+ )] 1

(24)

for the inverted regionAE(zs + t) > E;). Figure 3a shows a
satisfactory fit of the solution of eqs 14 with time-dependent
rates determined by eqs 16, 23, and 24 after interaction with
Gaussian pulses (17) and (18) to that of integral eq 7 in
combination with eq 9 for both the positive chirp and positive

essentially better for larger values of the Stokes shift (see Figure
3d) because in the last case it is easier to obey inequality (21).
For other detunings and negative chirp or no one from
inequalities|AE(zs + t)| < E; andAE(rs + t) > E; is fulfiled
during the pulse action, or fits are not good, and therefore they
are not shown in the figures.

Special Cases.l. Weak Interaction|oa(w21) J(t) f})r(t,t ")
dt'| < 1. Then we have from eq 15

Wi(t) = VV?? ®

i.e., we arrive at the result of section IlIA of ref 29, which was
obtained for fast vibrational relaxation.

2. Strong Interaction|os(w21) J()/or(t,t’) dt’| > 1. In this
situation, we obtain from eqs 15, 22, 23, and 24

Wo(t) = [ [r(tt’) dt'] " expl-fE,(M)]  (25)

exp[—pEx(1)]
Wi(t) = v

2 T

TSIZ BEA(t + 79

(26)

pt
erfl s [ —Eat+ 79
2t

S
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1 the transition rates in the solvent-controlled theory of the
Wit) = 4 \//—E{ 1~ [AE(r, + O/E]} expl-BE(D)] electron-transfer reactiofi&36.39 ’
75y (BE,) (27) We have proposed three approaches to the calculation of time-
dependent transition rates: integral formula (eq 15), evaluation
_ 1 _ 2 of the integral formula with error function (“error function”

Wao(t) = 4t \/MAE(TS + {1 = [E/AE( + )] formula) (eq 22), and the normal and inverted region formulas
N ' (egs 23 and 24, respectively). Solution of the time-dependent

x exp[—fExn(1)] (28) rate equations with the integral formula is a good approximation

. . to the solution of integral eq 7. The “error function” formula
respectively. One can consider eqs 25, 26, 27, and 28 as t§,5) can pe used in general for the qualitative description and

probabilities of light-induced “solvent-controlled” reactions for i, some regions for quantitative description. Using the normal
saturation regime. and inverted region formulas (23) and (24) is limited for chirped
pulses, however, eqgs 23 and 24 can be satisfactory approxima-
tions for both the positive chirp and positive detuning with
respect to the carrier frequenay

lll. A Simple Formula for the Absorption Spectrum of
Intense Phase Modulated Pulses

Solving eq 14, one can also obtain the quantity), using It is worthy of note that the time-dependent transition rates
the relatioR® differ from those of the solvent-controlled theory not only by
q the time dependence of the transition rates and the activation
_ -1 energies. The point is that the time-dependent activation energies
AWM = D(Oo(02)] dt (29) Eaj which determine both the probability of the “nonadiabatic”

transition Wi\ (t) (Eai(t)) and the value of the saturation

The quantityA(t) in its turn enables us to calculate the imaginary parameter Ex(t + 7J) formally relate to different instants of

part of the susceptibility time. What actually happens is that the dependéhge + 75)
NID..2 reflects changing the position of the spike (“particle”) or hole
Imy(w(t), t) = Ret LA(»[) (30) creation in electronic statg due to pulse chirp during the
h 20, vibrational relaxation times.

) ) ) ) The approach developed in this work can be extended to take
where N is the density of particles in the system. The piphasic solutesolvent relaxation into account.
dependence dimy(w(t),t) on the instantaneous frequenoyt)
describes the absorption spectrum of strongly chirped pulses Acknowledgment. This work was supported by the Israel
o(Q) at a frequency2 when a pulse duratioy is much larger  Science Foundation and the Ministry of absorption of Israel.
than that of the corresponding transform-limited age?i.e.,
a(Q2) ~ wlmy(w(t),t), wheren(t) = Q. Appendix A: Time-Dependent Rate Equations by

Using egs 14, 15, 16, and 29, one can obtain the following Bardeen et al.

equation for the nonequilibrium population differendgt)
which, according to ref 52, determines the absorption spectrum
for strongly chirped pulses (see eq 30)

Bardeen et at? considered the four level system used in the
early days of the dye laser thed®/In such a model, the
absorption and emission spectra correspond to different pairs

exp[—BEx ()] of levels. The vibrational relaxation is simulated with the
At) = : {n,(®) population relaxation rates between two ground-state levels and
1+ o @) dOL [{REE) dt — tR(1)] between two excited-state levels. This model ignores all

_ - coherences. The time-dependent probabilities of optical transi-
n(0) expl-AAEM]} (31) tions are determined by the absorption and luminescence spectra
One can see from eq 31 thAf(t) < O (the absorption is  in a weak field, and their shape does not depend on field
negative) if the expression in the curly brackets on the right- intensity.
hand side of this equation is negative (certainly, for the positive By contrast, our rate equations describeititegral popula-
denominator). The most benefit conditions for this are realized tions of electronic states. They are based on the model of the

for negative chirp when in the end of a pulse the valuax(t) population wave packets diffusion with respect to the coordinate
is moderately large andE(t) < 0. This conclusion conforms ¢ in harmonic potentials (see eqs 4, 7, and 8). A strong optical
with experimental results! field can distort the population wave packets shape, creating a

It is worthy of note that the form of the expression in the hole in the initial distribution near the intersection of “moving”
curly brackets on the right-hand side of eq 31 is similar to that potentials. This effect is described by the saturation of the time-
of the population difference corresponding to vibrational equi- dependent probabilities of optical transitions introduced in our
librium (weak interaction). However, it does take into account work. In other words, the field intensity influences on the
vibrationally nonequilibrium processes which influence on the frequency dependence of the time-dependent probabilities.

integral populations;(t) and ny(t) (see section II). Diffusion along the coordinate is related to the relaxation of
both energy and phase. Therefore, the time-dependent prob-
IV. Conclusion abilities of optical transitions have been obtained in our work

with taking into account both energetic and phase relaxation

In this work, we have developed a simple and physically clear ™. " . )
b P Py y within the ground and excited electronic states.

approach to the interaction of intense chirped pulses with large
molecules in solutions: time-dependent rate equations for
integral populations of electronic molecular states. For weak
interaction, the time-dependent transition rates have a form of
the Marcus electron-transfer rafeFor larger interactions, the Let us check our results by comparing them with those
transition rates take into account the saturation effect similar to corresponding to long time limit for rectangular pulses without

Appendix B: Rectangular Pulses without Phase
Modulation
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chirp. Burshtein et al° determined the stationary rates of light
absorption and emission via stationary populations:

1+ W, T, W,,T,
f s n f
1+ Wy, +W,)T, 2 14 (W, + W, T,

n;

whereT; is the longitudinal relaxation time. For our cade,
— o0, and

W21 W12

nl N W12 + W21, n2 N W12 + W21

Itis clear that our probabilities trivially satisfy the last equations
due to relation (16) which expresses the detailed balance
principle. Therefore, we will consider also the long time kinetics
of approaching the stationaty state.

In the last case for the Laplace-transform of the magnitude
A(t) during the pulse action (see eq 7), we obtain

A(p) = exp(-BEA PIL + 0w, )IR(P)]}  (B1)

whereA(p) and R (p) are the Laplace-transforms of(t) and
R(tt") =Rt —1t"), respectively, an&R (p) can be represented
as

. 2 z
R(p) = E VAEIp Zij(wﬂ — o, P 0wy, —w) (B2)
=

éjj (w21 — w,w21 — w,p) are the Laplace-transform of the Green’s
functionsGjj(w21 — w, ;w21 — w, 0)2° The Green’s functions
Gj(w21 — o, t,wo1 — w, 0) result fromGc(q,t;q) (see eq 4) by
passing on to the variablex (@2d/h)g and putting
o = ((I)Zd/h)q = w21 — W.

To study a long time kinetics, we will expand the function
Gj(w21 — o,p;w21 — ) in a power series op:3°

~ 1A _
Gj(wy — 0Py — w) & BE(”Er/ﬁ) v exp(—pEy) +
Fj(w21 —w) (B3)

where

Filwy, — w) = fow dt’ij(a)21 —otw, —,0)—

BB IB) 2 exp(-fEy)

Using egs 9, B1, B2, and B3, we obtain for the populations of
electronic states

1
R
Wi,
o+t P e IR (B9

where

Fainberg and Narbaev

04(@,1) J EXP(PEL)

Wy, =
1+ Ua(wZI)JE VnE,/ﬂZFJ—(le — )
]
O(w,1) J eXp(-PEn)
W,, = (BS)

1+ oa(wngz «/JtEr/,BZFj(w21 - w)
]

It is clear that eqs B4 are the solution of the following
equations:

dn, ,
= £(Wyyn, — Wyny)

i (B6)

Equations B5 and B6 are a special case of eqs 14, 15, and 16.
In other words, the time dependent rates of the transititips
(t) andWa4(t), introduced in our work, coincide with the time
independent rates in the limit of long times.
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