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Abstract 

We developed theoretically and experimentally the principles of a spectroscopical 
method based on resonance transient population gratings for quantitative description of 
solvation dynamics of large molecules in liquid solutions. The solvation dynamics of 
LDS 750 in N -monosubstituted amide, ethylacetamide and butylacetamide have been 
measured. This class of solvents exhibits exceptionally large static dielectric 
constants. The solvation dynamics of LDS 750 in all solvents consists of ultrafast as 
well as slow components. 

A theoretical basis for solvation dynamics study of complex molecules in solutions 
by resonance nonlinear spectroscopy has been developed. We have introduced a model of an 
optically active non-Markovian oscillator (NMO) for the description of solvation 
dynamics in nonlinear optical experiments in a systematic way. It has been shown that an 
optically active Brownian oscillator and different NMO models can be considered as 
successive long time approximations to a real correlation function of an optically 
active oscillator. The model of two NMOs with an exponential memory function describes 
accurately various experimental and computer simulations data of ultrafast solvation 
dynamics. We have compared the latter model with modem theories of solvation. 

1. Introduction 

Ultrafast time-resolved spectroscopy has been applied to probe the dynamics of 
electronic spectra of molecules in solutions [1-5]. Typically, a fluorescent probe 
molecule is electronically excited and the fluorescence spectrum is monitored as a 
function of  time. Relaxation of  the solvent polarization around the newly created 
excited molecule state led to a time dependent Stokes shift of the luminescence 
spectrum. Such investigations are aimed to study the mechanism of solvation effects on 
electron transfer processes, proton transfer, etc. [1-5]. 

In recent ultrafast experiments the fast (subpicosecond) components in the 
solvation process have been observed [4-5]. Transient resonance degenerate four-wave 
mixing has been used for the observation of  ultrafast solvation dynamics [6-8] (see also 
references 9-10). In this method (figure 1), two short pump pulses with wave vectors k 

and k create a light-induced grating in the sample under investigation with a wave 
2 

vector q = k I - k 2. The grating effectiveness is measured by the diffraction of a time 

delayed probe pulse k 3 with the generation of  a signal with a new wave vector ks = k3 + 

( k  k2). This method is characterized by a high time resolution and provides 

additional spectroscopical information, in particular it senses the dynamics in the 
ground electronic state which is principally absent in luminescence measurements. 

One must distinguish between the transient resonance degenerate four-wave mixing 
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experiments with very short pump pulses [6,9-10] t - 10 fs from the experiments with 
P 

relatively long pulses with t - 150 fs (see this work and [7-8]). The experimental 
P 

conditions of  our transient degenerate four-wave mixing experiments have been designed 
to provide similar information to the ones given by time-resolved luminescence 
(TRL)studies. TRL experiments investigate the hot luminescence processes occurring after 
the completion of the electronic transition phase relaxation (with a characteristic 
decay time T') and during the vibrational and solute-solvent relaxation in the excited 
electronic state. Therefore, we conducted our resonance four- wave mixing experiments 
[7-8] in such a way to prevent the polarization gratings and to preserve the population 
gratings. The polarization gratings are destroyed during the phase relaxation time T" of 
the electronic transition, and the population ones are destroyed during the vibrational 
relaxation time "c. c 

We shall consider molecules with broad structureless (or weakly structured) 
electronic spectra for which the following inequality is fulfilled: 

9 
(~2"Cc > >  1 ( I )  

where o 2 is the second central moment of  an electronic spectrum. It has been 

demonstrated that the following times are typical for the time evolution of the system 
investigated [11-15]: 

0 I/2 < T' << z (2) 
2 c 

-i/2 plays the role of  the reversible dephasing time of an electronic transition, where t~ 2 
T' " - 1,1/3 = ('~c¢~) plays the role of the irreversible dephasing time, and "r c plays the role 

of the relaxation time of populations. The typical value of  the irreversible dephasing 
time for complex molecules in solutions for usual conditions T'  ~ 20 fs [11]. Therefore, 
the character of the response of the system under study (~2"c~ >> 1) in degenerate 

four-wave mixing experiment depends on the relation between T'  and the pump pulses 

T 

f 
--..... 

-I;5 

Fig. 1. Geometry for transient grating spectroscopy. 
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duration t [11-12]. 
p 

In our experiments the pump pulse duration tp>> T' (tp ~150 fs). Relatively long 

pump pulses t >> T" of frequency o~ create a hole in the initial thermal distribution p 
relative to a generalized solvation coordinates in the ground electronic state (Fig. 2) 
and, simultaneously, a narrow spike in the excited electronic state. These changes are 
measured by the probe pulse at the same frequency co. In the next sections we shall term 
degenerate four wave mixing spectroscopy with long pump pulses t >> T" as remnant 

p 

transient population grating spectroscopy (RTPGS). 
In recent papers [7-8] we have reported on solvation dynamics studies using RTPGS. 

The solvation dynamics of  LDS 750 dye in alkanols like metanol, ethanol, propanol and in 
diols 1,2-ethanediol, 1,3-propanediol and 1,4-butanediol have been measured. In this 
study we extended our previous RTPGS measurements to a new class of associative liquids 
- the N-monosubstituted amides. This class of solvents exhibit exeptionally large static 
dielectric constants. 

We have previously developed the theory of the RTPGS for solvation dynamics 
study using the approach of four-time correlation functions and obtained expressions for 
the case when the perturbation of the molecular nuclear system during the electronic 
transition is a Gaussian quantity [7-8,16]. In particular, the latter reduces to the 
mirror symmetry of the equilibrium absorption and luminescence spectra. However, the 
absorption and luminescence spectra of the molecule LDS 750, used in our experiments, do 
not satisfy to the law of the mirror symmetry. Therefore, in Ref.17 we have developed 
another approach to calculate the RTPGS signal. We took into account the conditions 

1/3 
(1)-(2), and also tp >> T' -- (xco 1)_ ab initio. Such an approach allows us to solve 

concrete problems, in particular, to generalize the theory [7-8,16] for the case of 

t=O 

Fig. 2. 
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Potential surfaces of the ground and the excited electronic states of a 
solute molecule in liquid. One dimensional potential surfaces as a function of a 
generalized solvent polarization coordinate. 
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arbitrary shapes of the intramolecular spectra (non-Gaussian case). Here it will be used 
for modelling the RTPGSsignal from the molecule LDS 750. 

Furthermore, theories [7-8,16] and also the theory presented in this paper, connect 
the nonlinear optical response of  a molecule in a solution with the correlation function 
S(t) that describes solvation dynamics (see below). The analytical form of S(t) can be 
arbitrary in principal. Its calculation is an independent problem. 

For the aim of  the description of linear and nonlinear response, a model which 
should be described by a simple enough correlation function S(t), is needed, in order to 
obtain results which can be treated, to achieve a comparison with an experiment. On the 
other hand, such a model must be sufficiently real. In this regard, recently stochastic 
models were studied on a large scale [5-6,9-19] . The model of  an optically active 
Brownian oscillator (BO) became very popular in linear absorption [20], Raman scattering 
[21], four-photon [6,22-25], and time resolved luminescence [5] spectroscopy. Yan and 
Mukamel have introduced this model for an optical response by a systematic way [23]. The 
popularity of  the optically active BO model is due to the very simple analytical form of 
its correlation function. Such a model was broadly used in spite of  the fact that its 
correctness criteria [21] is often not fulfilled [26]. In contrast we have proposed [26] 
a model of an optically active non-Markovian oscillator (NMO). Here we introduce a model 
of  an optically active NMO by a systematic way. We show that an optically active BO and 
different NMO models can be considered as successive long time approximations to a real 
correlation function of  an optically active oscillator. We obtain simple expressions for 
the relaxation and correlation functions of  an NMO with an exponential memory function, 
and apply them to the description of solvation dynamics of  a probe molecule. 

It is worth noting that the concept of  an optically active NMO exceeds the limits 
of  being able to describe only the solvation dynamics. It is also interesting from the 
point of view of a general description of vibronic transitions in linear and nonlinear 
optical experiments. 

2. Theoretical background 

Let us consider a molecule with two electronic states n=l and 2 in a solvent 
described by the Hamiltonian 

2 

H 0 = Z In> [En-ihyn+ Wn(Q) ] <n I, E_ > E 1 (3) 
n = l  

where E n and 27n are the energy and inverse lifetime of state n, Wn(Q) is the adiabatic 

Hamiltonian of a reservoir R(the vibrational subsystems of a molecule and a solvent 
interacting with the two-level electron system under consideration in state n). 

The molecule is affected byelectromagnetic radiation of  three beams 

E(r,t) = E*(r,t) + E ( r , t )  = ~ om(r,t) exp (-itat)+ c.c., 
--) 3 -~ 

where om(r,t) = Z ~ (t) exp (ikmr). 
r n = l  

Since we are interested in the solvent-solute intermolecular relaxation, we shall 
single out the solvent contributions to E n and Wn(Q), 

E = E ° + <vet>, (4) 
n n n 

Wn(Q) = WnM + Wns' Wns= Wso + Wns (5) 
where Wso is the Hamiltonian governing the nuclear degrees of freedom of  the solvent in 

the absence of  the solute, WnM is the Hamiltonian representing the nuclear degrees of  
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freedom of solute molecule, E ° is the energy of state n of the isolated molecule, 
n n s  

and V el describe interactions between the solute and the nuclear and electronic degrees 
n 

of freedom of the solvent, respectively. It is possible to replace the operators V c~ in 
n 

the Hamiltonian by their expectation values <Vnt> [27]. 

A signal in any method of four-photon spectroscopy can be expressed by nonlinear 
polarization pNL. The signal power I in the k direction at time t is proportional to 

$ $ 

the square of the modulus of the corresponding component of the cubic polarization 

pea)+: 

is(t)~ ]p(3)+(r,t ) 12 (6) 

In pulsed experiments one usually measures the dependence of the signal energy J on 
$ 

the delay time • of the probe pulse relative to pump ones: 
O o  

Js(x) - .f dt [ P(3)+(r,t)[2 (7) 

Our main interest is in the solvation dynamics irrespective of the behavior of the 
molecule. Numerous experiments [28-30] show that a Franck-Condon molecular state, 
achieved by an optical excitation, relaxes very fast, and the intrarnolecular spectra 
form within 0.1 ps (concerning the interpretation of experiments [28] see Ref. 31). 
Therefore, we shall consider that in our experiments the intramolecular relaxation 
takes place within the pulse duration (tp = 150 ps). More exactly, there are fast and 

slow steps in the relaxation of a Franck-Condon state: the faster component is mainly 
determined by the intramolecular relaxation while the slower step is determined by the 
intermolecular relaxation. For these conditions, one can consider that a molecule is in 
the equilibrium state characterized by the equilibrium density matrix P~,a = 

exp(-~Wk~)/Tr exp(-~W ), where k=l,2; [~=l/kT and Tr R denotes the operation of taking 
M M 

track with respect to the molecular degrees of freedom. 
We shall calculate P(3)+(r,t), using a general theory [17]. For the conditions 

under consideration, the formula for the positive frequency component of the resonance 
polarization takes the following form [17]: 

P+(r,t) : ~h NDI2(D2, g ( r ' t ) )  {i[F~x(co,to,t) - F~0(co,co, t)] + [*~x(o~,to,t) - @~p(o),to,t)] } 

where N is the density of solute molecules, D12 is a matrix element of the dipole-moment 

operator taken with respect to the electron wave functions, 
o o  

F " o~',~,t) Ft~,tp(Ol,tO,t) = J" dto" a,gM(m ) Fet,SOs(t01- O l- 
- O o  

are the spectra of the non-equilibrium absorption (00 or luminescence (tp) of a mol~ule 
in solution, toel= (E2-El)/h is the frequency of the pure-electronic transition 1 ~ 2, 

Fo~ (to',to, t) and ,gs 
o o  

Fot,qOM ( ) = ~ f dx I Tr R [exp(Szi/Ia W2,1M~I) exp(,i/h WlaMXl) 91 oM] exp(-it°"cl) (10) 
- c o  M 

are the corresponding "intermolecular" (s) and "intramolecular" (M) spectra; 

(8) 

(9) 
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oo Fcz.(p (to" ,to, t) P 
~a,cp (tox'to't) = ~ . ~  j" do)' to,_tol  

are the non-equilibrium spectra of the refraction index which are connected with the 
corresponding spectra Fo~,(p(to 1,to,t) by the Kramers-Kronig formula, P is the symbol of the 

principal meaning. 
"Intermolecular" spectra F~ ,~(to',to, t) are determined by the solvent contribution 

(due to the fact that the quantities of the type of u s = W2s- Wls ,  0) to the electronic 

spectra. In the four-photun approximation they can be written by Eq.(14) (see below). 
Let us limit ourselves by the Gaussian value u s. The Gaussian approximation is 

valid for the description of the intermolecular relaxation [27,32]. The interaction 
energy of the solute molecule with its surroundings can be represented as the sum of the 
energy of interaction with the individual solvent molecules. Accordingly, the quantity 
Us(t ) can be also represented as a sum Us(t ) = ~ Usj(t ) of random variables Usj(t ) 

associated with jth solvent molecule, correspondingly. The number of such solvent 
molecules (j) can be quite large (in the absence of specific chemical interactions). In 
addition, the contributions Usj(t ) can be considered for a liquid as weakly correlated. 

According to the central limit theorem of the probability theory [33], these properties 
of Usj(t) permit one to consider the magnitude Us(t ) as a Gaussian stochastic function 

[321. 
Using the Gaussian and four photon approximations, we can obtain the following 

expression for the spectra Fct,q0(to,to, t) [17]: 
t -.-) o o  

- -  F P Ft~,9(tol,to, t ) = z. rc J" d'r2]D i ~(r,t-z2)[2 J'J" dto'dto" aM(to)-  F ~ (to-fo.-to')- 
2h 2 0 - - *  t~ _j 

• F ( t o " )  O~, , (pM"  " F0t,(pS (to 1-to(X.(p'%2) 

t --) 
(bCt.(p(tol,to, t ) = + V__~h 2 f0 dz2 In~l- °#"(r't-x~) 12"  

• e " "" 0~,,(~)M (0")) X(g,q)S(tol-toO~,(p'Z 2) 
where 

[co I toa.,~(x;)] "~ 

F~,tps(tol-totZ,tp,%2) = (2rCO(X2))'lt2- exp { - 20(x2)  } 

(12) 

o o  

F ' F e - " f T  dto'dto" ( ~ M ( t o )  " ( 3 f . S ( O ) - ( . 0 2 1 - t o )  " 
- c o  

(13) 

(14) 

are the changes related to non-equilibrium solvation processes in the absorption (F~) 

and the emission ( F ¢  spectra, 

Xo~,(pS(to 1- toOi,(p'1;2) = F~,(pS(to 1- to(y.,(p'%2 ) Erfi[  ( to-  to(/,,(p(%))//(2(~(1;2))l/2 ] 

are the changes related to non-equilibrium solvation processes in the refraction index, 

x Erfi(x) = "1"0 exp(y2) dy, 

"C 
2 

m~,g~ (z2) = ~21+ to" + (to-m21-to') ReS(x2) - g(~,q~q~2C2s-Im S S(x) dx, (16) 
0 

(11) 

(15) 
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~(~.~0)~0 is the Kronecker symbol (8(a.q))q)= 8a9= 0 for 0 a ('c2) and 8(~,q))q) = 6qxp= 1 for 

0)~0 (x2)), d)21 = oel + O)st/2, COst = 2 Tr (UsP~s) -= 2 <Us> is the solvent contribution to 
the Stokes shift between the equilibrium absorption and emission spectra, p:~. denotes 

the equilibrium density matrix of a solvent, la20 S(t) = <Us(0)Us(t)> - <Us> , S(t) is 

the normalized solute-solvent correlation function, C2s = ra-2 (<u~(0)> - <Us>2) is the 

contribution of the solvent to the second central moment of both the absorption and the 
luminescence spectra, Us(t) = exp ((i/h)Wlt) u s exp ((-i/n)Wlt), 

a(z 2) = a2s (1-Re2S('~2)) (17) 
is the time dependent second central moment, 

F ¢ as (°)<°l) = (2n(S,s)ln exp [-(o-0)i)2/2a~] (18) 
is the equilibrium solvent contribution to the absorption spectrum. We do not limit our 
consideration here by the classical (high-temperature) approximation for the solvation 
dynamics. Let us consider this issue in more detail. In the general (quantum) case, the 
correlation function S(t) is complex and it is not an observable quantity. Therefore, it 
is difficult to treat its physical meaning. It is more convenient to deal with the 
relaxation function Or(t) which describes the relaxation of a system after removal of 

the external disturbance [34]. Unlike the correlation function, ¢r(t) is always a real 

observable function. 
Let us introduce the Fourier transforms of {J2sS(t) and Cr(t): 

I s ( o )  [ f~2" ,sS( t )  ] 
0(O) ] = ~ 7 dt exp(-io}t) " (19) 

_~ * r  ( t )  
s(o) and ¢(o) satisfy the following relation [34-35]: 

s(o) = {laaY[1-exp(-h0~] } 0(to) (20) 

Using the inverse Fourier transformation, we obtain from Eq. (20): 

~ d*r ] (21) 1 [2 J" o coth 0(O) cosOt d o  -i ---fiT- S(t) = n2fi-~2 s 0 

The latter allows one to find the correlation function if the relaxation function is 
known i. Using Eq. (21), we obtain the following expression for the time dependent 
frequency of the nonequilibrium emission spectrum 

torp('c2) = ~21+ {0" + (o)-d)2 -{0' ) ReS(x2) - h "l Cr(0) [ l - f  (z2) ] (22) 
where fr(t)= Cr(t)/q~r(0 ) is the normalized relaxation function. For the classical limit 

(Ia{o~3 << 1) Ia2a2sReS('t2) = [31¢r(~2), i.e. the normalized real part of the classical 

correlation function coincides with the f(t) .  In addition, for the classical case 

I For-high-iemperaiure-iciassicaii-ca~-i~)~-<<-i;-Oitoi-=-~sll i~i:-+l~e-substituiiOn-Of 
the latter expression for ~(o)) in Eq. (20) reduces to the relation between s(o) and 
sct(o ), obtained in a different way [26]. 
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-1 -! 
O'2s = cost h 13 , therefore 

* r  (0) = htost (23) 
el 

In the last case, Eq. (22) for the frequency ~(p(z2) reduces to the expression we 

obtained before [7-8,16]. 

3.Comparison of nonlinear optical spectroscopy with TRL 

The TRL signal is determined by the value Ftp(to f, to, t) (Eq.(9)), where tof is the 

radiated frequency, to is the excitation frequency. One can see the close connection of 
the TRL spectroscopy with nonlinear optical spectroscopy. The corresponding signals are 
determined by the nonequilibrium absorption and emission processes. The TRPGS signal is 
determined by both the non-equilibrium processes of the absorption and emission and also 
by corresponding refraction index spectra at the frequency to I see Eqs. (6)-(8))• In 
contrast to the TRPGS, the TRL signal is determined only by Ftp(to P to, t), i.e. by the 

relaxation processes in the excited electronic states. However, in TRL spectroscopy, the 
whole spectrum is measured while in RTPGS only the excitation frequency is monitored. 

It is worthwhile noting that these conclusions have been obtained without using the 
four-photon and Gaussian approximations. 

4.Modeling RTPGS signal 

Let us use the developed theory for modeling RTPGS signal. Fig. 3 illustrates the 
time behavior of the signal Js(X) which was calculated for the limit of short pump 

pulses by formulae (7), (8), (12)-(18). The shapes of "intrarnolecular" spectra F0~,tpM(to" ) 

are modeled by the same dependence as that in Refs.[7-8,16], but g~neralized for the 

• " c ' F " " case of non-mtrror-symmemc spe tra F(pM(to ) and o~M(to ): Ftxra(to) - ~ /F(xtx+l ) where 
- X  

F(x+l) is the gamma-function, xot = (to'-toel)/(4too/3), and FtpM(to') - g t0/F(-xqo+l), xq0 = 

12 (to'-toel)/(2too/3). We used the following values for the parameters:  tost(2O2s )'1 = 2, ~- = 

1.5, too(2t~2) lp" = 1.14. The "intramolecular" spectra FtxM(to' ) and Fq~M(to') for these 

parameters are shown in Fig. 4 in the form of the equilibrium spectra Foc M (to-toet) and 

FtaM(to l-to) when the contribution from the solvent is absent. The equilibrium spectra of 
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the molecule in solution F e c ct (to-o,_]) and F 9 (co~_l-c0t-o) are also shown in Fig.4. 
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Fig. 3. Model calculations of the RTPGS signal (a); the solvation correlation function 
(b) consists of a Gaussian followed by three exponential decays (formula (23a)); 
note the curves are on a logarithmic scale, therefore the constant part of 

the Js(Z) signal has been substracted; z0=200 fs, T/z0=,~, a3"x~=7.7016, 

a-x - -0 .33 ,  as-x0=0.04, a=0.3,  a4=a6=as=0.2, a7"z0=0.00286, ag"X0=0-00074- 
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Fig. 4. The shapes of the "inlramolecular" spectra F~&0M(0Y). 1 and 2 are the equilibrium 

luminescence and absorption spectra of a molecule, respectively, when the solvent 
contribution from the solvent is absent; 3 and 4 are the equilibrium spectra of a 
molecule in solution. The arrow shows the relative position of excitation 
frequency co for the four-photon signal calculations (Fig.3). 
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lattersare similar to the absorption and luminescence spectra of the molecule LDS 750 in 
solution used in our experiments. 

It follows from Eqs.(7)-(9), (11)-(16), (22) that the signal Js(Z) depends on the 

excitation frequency to. We chose to = to + to /2  which approximately corresponds to the 
e l s t  

experimental situation. We use here the following form for the correlation function 
S(t): 

S(t) = a 2 exp(-a3t 2) + (l-a2-a 4- a6-as) exp (-al t)+aex p (-ast) +a6exp(-aTt ) + 

+ asexp(-agt) (23a) 

The first addend in expression (23a) corresponds to a fast Gaussian component, 
observed in [4]. The second one corresponds to the relatively fast exponential component 
with an attenuation time of 200-400 fs observed in [4land in our experiments. The third 
component corresponds to a slower attenuation with a decay time of the longitudinal 
relaxation "~L" It is worth noting that such a division by different contributions to 

the correlation function is purely formal, and is used here to impart the realistic form 
of the correlation function. As a matter of fact, both the short and the long time 
components of  the correlation function are manifestations of one physical process. We 
shall discuss this issue below. We also showed in Fig.3 the time dependence of the 
corresponding correlation functions S('~), used for the calculation of corresponding 
signal Js ('0- 

One can see that the dependencies S('~) and Js('C) are very similar (but not 

identical), and the signal Js('~) reflects the fine details of S(x). Fig. 5 shows the 

experimental RTPGS signal of  LDS 750 in 1,3-propanediol [7-8]. One can see that the 
experimental (Fig. 5) and the theoretical (Fig. 3) behaviours of  the signal are similar. 
Thus, the RTPGS can be used for the ultrafast study of the solvation dynamics. 
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Fig. 5. RTPGS signal of  LDS 750 in 1,3-propanediol. 
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5.Experimental Details 

The laser source consists of a CW mode locked amplified dye laser. Detailed 
experimental description of the system is given in references [7-8]. A small portion of 
a CW mode locked Nd:YAG 1.06 ~tm radiation is amplified by a CW Nd:YAG regenerative 
amplifier operating at 500 Hz. The doubled frequency output of the amplifier was used to 
amplify the ultrashort dye laser pulse 140 fs FWHM, 1 nJ generated by a synchronously 
pumped dye laser. A dye amplifier consists of three flowing dye cells was pumped by the 
regenerative amplifier second-harmonic pulse. The dye laser amplification is achieved by 
DCM dye to ~15 ~ with a pulse width comparable with the non-amplified pulse. 

In the four wave mixing optical setup the laser pulse was split into three beams. 
Optical delay lines were used to overlap in time the pump beams and to control the time 
delay of the probe beam. The three beams (parallel polarization) were focused onto the 
sample by a single lens of 50 cm focal length. In DFWM experiments the signal beam exit 
the sample at a unique direction ks=(kl-k2)+k 3 and therefore it is easily separated from 

the three generation beams. 
LDS 750 (styryl 7) was purchased from Exciton and was used without further 

purification. The solvent used were either analytical or of a spectroscopical grade. 
Samples were circulated in a flowing cell of 1 mm pathlength. 

6.Experimental Results 

Time-resolved four-wave mixing signals of LDS 750 in ethylacetamide and 
butylacetamide are shown in Fig.6. The signals were collected with relatively low time 
resolution by scanning the probe beam delay stage at 0.5 ps time steps. As seen from the 
figure the signal decay curves for LDS 750 in these solvents are nonexponential and 
consist of several time domains. The long life time component of LDS 750 in both liquids 
we attribute to the decay of the electronic population grating. The excited state 

0.8_ t 

0 . 0  " oth laco tamiOo 

0 50 100 150 200 
Time [ps] 

Fig.& RTPGS signals of LDS 750 in ethylacetamide and butylacetamide solutions. 
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lifetime of LDS 750 in these liquids is about twice longer than the longest decay 
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Fig.7. RTPGS signals of LDS 750 in both amides and in 1,3-propanediol 
solutions. 
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Fig.8. High time resolution signal of the first 2 picoseconds of LDS 750 in 
ethylacetamide and butylacetamide solutions. 
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time of the DFWM signals since the DFWM signal is proportional to [ p(3)+ ] 2 and p(3)+ 

decays as exp (-x/Tl) where T 1 is the excited state lifetime. 

The shorter time components of the DFWM signal of LDS in ethylacetamide and 
butylacetamide are shown in Fig.7. The signals are shown on a time scale of 
20 picosecond with 50 fs time steps. Each of the decay curves shown in Fig.7 consists of 
several time components. All of these time components we attribute to the complex 
solvation dynamics of LDS 750 in acetamide solvents. 

The longest component can be approximately fitted to an exponential decay of 10 and 
50 ps for ethyl and butyl acetamide respectively. These relaxation times correspond 
roughly to the longitudinal dielectric relaxation time z L of the particular liquid. The 

dielectric properties of amides were studied by Bass and Cole [36] and Danhauser and 
Johari [37]. 

Leader and GormJey [38] reported in 1951 of the exceptionally large static 
dielectric constant of liquid N-monosubstituted amides. They suggested that the large 
dielectric constants of these liquids must be attributed to intermolecular association 
into essentially linear chain by CO....HN hydrogen bonds. The degree of association is 
usually given in terms of the dipole correlation factor g of Kirkwood. The size of the 
amine alkyl group affects the magnitude of the dielectric constant to a greater extent 
than the size of the acid alkyl group in isomeric amides [39]. It was also found [39] 
that the size and shape of the alklyl substituent of the amine was of secondary 
importance to the intermolecular association. 

The dielectric relaxation for several amides was measured in the range 0.5-200 MHz 
[36-37]. The slow relaxation kinetics for the amides appear to be characteristic of 
hydrogen-bonded liquids (alkyl halides liquid relaxation is about 1200 times faster). 
Despite the large difference in molecular structure and the extent of intermolecular 
association as deduced by the Kirkwood correlation factor, the dielectric relaxation in 
alcohols and amides with similar molecular weight parallels both in magnitude and 
temperature dependence. 

The short time components of the DFWM signals of LDS 750 in ethylacetamide and 
butylacetamide solution, are shown in Fig.8, using 20 fs time steps of the probe beam 
delay stage. The DFWM signal of both solvents consists of an ultrashort spike followed 
by a ~400 fs decay. The initial Gaussian shape spike is caused by a contribution of two 
superimposed components. A coherent contribution arises due to repumping of energy from 
the pumping beams to the probe beam and is often found in DFWM experiments. The 
coherent spike full width half maximum is determined by the laser pulse correlation 
function and hence by the laser pulse width. The coherent spike prevents us for the time 
being to resolve accurately the first -150 fs of the solvation dynamics. 

The ultrafast solvation dynamics of LDS 750 in acetonitrile was studied by 
Rosenthal et al. [4] using time resolved luminescence technique with ~125 fs FWHM 
instrument response function. The solvation response consisted of two distinctive 
parts. A fast initial decay accounted for ~ 80% of the amplitude was fit by a Gaussian. 
The slower tail decayed exponentially with a decay time of 200 fs. In a subsequent 
study, Cho et al. [5] measured the time dependent non resonant optical Kerr effect in 
neat acetonitrile liquid. Both experiments have shown the biphasic character of the 
solvent response. A vibrational model was used to describe quantitatively the solvation 
and the neat liquid dynamics [5]. A number of Brownian oscillators with frequency 
distribution of the vibrational modes produce a very good fit of both experimental data. 

The shortest time component has a Gaussian shape but can not be time resolved since 
the coherent spike is superimposed on it. Also the pulse duration in our experiment is 
longer than the predicted Gaussian component of the solvation. The solvation dynamics on 
the short time scale < 2 ps of LDS 750 in ethylacetamide and butylacetamide is quite si- 
milar. The relative height of the coherent spike superimposed on the Gaussian component 
versus the subsequent total signal is the same in both liquids. The decay time of the 
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exponential component is -400 fs for both liquids, about twice the decay time found in 
acetonitrile [4]. We now wish to compare the solvation dynamics on the short time scale 
<2ps of LDS 750 in methanol, and diols, previously studied by us [7-8], with the current 
measurements of acetamides. On this short time scale the solvation dynamics in methanol, 
diols and amide is quite similar. The relative height of the coherent spike 
superimposed on the Gaussian compound versus the subsequent total signal is the same in 
all liquids. It is interesting to note that while the longer solvation components in 
these liquids are strongly dependent on the particular liquid, the ultrafast solvation 
dynamics is almost identical (within the S/N ratio of  the experimental data). 

However the relative amplitude of  the ~400 fs component is ~0.4 for methanol and 
ethyl acetamide and drastically smaller in the diols (0.2, 0.15 and 0.1 in 
1,2-ethanediol, 1,3-propanediol and 1,4-butanediol, respectively) and 0.2 in 
butylacetamide. 

7.Non-Markovian model of  an optically active oscillator for uitrafast solvation dynamics 

1. Systematic introduction of the optically active oscillator model." from an overdamped 
Brownian oscillator to a non-Markovian oscillator 

In this subsection we shall show how to obtain the various models of optically 
active oscillators in a systematic way. 

According to the previous subsection, the solute-solvent relaxation is determined 
by the relaxation function (I~r(t). Let us turn to the central magnitude u = W 2- W -  < W-_ 

W]>(<u> = 0). The magnitude ~r(t) can be written for our case in the form [34] 
c,o 

i • (t) = - ~ l i ra  S <[u, u(t)]> exp (-et')dt" (24) 
E->+O t 

where u(t) = exp((i/ h)Wlt) u exp(-(i/ h)Wlt ). If the value u consists of a sum of 

partial contributions u = ~ u., which are not correlated with each other, then the value 
J J 

• r(t) can be represented in the form ~ ( t ) =  E • (t). Here the magnitudes • (t) are 
j rj r'j 

also determined by Eq. (24) where the value u must be substituted by u.. The maZgnitudes 
J 

uM= W2M- WI~  < W2M- WtM> and u s can serve as examples of different contributions to u. 

In the case of  intramolecular transitions, u can be contribution-s from different 
J 

optically active oscillators. For a probe solvation, the longitudinal and transverse 
polarizations have different contributions (see below). 

It is convenient to introduce a normalized relaxation function for the j-th 
contribution: 

f ( t )  = • (tl/~j(O) (25) 

Let us turn to the study of  fo(t). Consider its Laplace-transform 
oa  

t ' ( p )  = f exp (-pt) f ( t )d t  (26) 
0 

Let us construct an approximation to f ( t ) ,  which is an asymptotic (long-time) 

series expansion (see Appendix A). Such an approach corresponds to the fitting of f ( t )  

by two-, three- (and so on) pole formula. We shall write down the fractions obtained by 
this approximation for the Laplace-transform of f ( t )  in the form of continued 

fractions. For a two-pole case we have 
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"~(2) (p) = 1 (27) 
rj -C jl  p +  

p - (pl+p2) 
where plp2= -cj? c is determined by formulae (A4) and (A5) and -(pl+p2) is an 

empirical constant. The Laplace transform T(2)(p) coincides with the Laplace transform 
rJ 

of the BO relaxation function [17,20,23,26] for to2.j = -Cjl and Tj = -(pl+p2) , where 

is the attenuation of the optically active BO. Thus,the model of the optically active BO 
can be considered as a two-pole approximation to the relaxation function of the system 
under consideration, and its frequency ~ = ~-cjl. For very large attenuation "/i >> toi' 

"((p) turns to the form 

]~(p) = 1/ (p + zc), (28) 

where x¢ = ~2i/'/i, and corresponds to the Kubo's stochastic model [42]. 

For a three-pole case we obtain (see Appendix A): 

r 3 , ( p )  = 1 (29) 
rj C j l  p -  

C j l -  C j 2 / C j l  
p +  

p - (pl+p2+P3) 
]~(S)(p) coincides with the Laplace transform of the relaxation function of the NMO with 

r.l 
an exponential memory ~j(t) = ~j(O) e x p ( - ~ l t ] )  [17,26] for ~2 = J -cjl, tpj(0) = 
cjl-cj2/cjl and ~. =-(pl+pz+p3 ) is an empirical constant . The function tpj(t) describes 

J 
the memory effects in the relaxation process.Thus, the model of an optically active NMO 
with an exponential memory function tpj(t) can be considered as a three-pole 

approximation to the relaxation function of the system under consideration. 
According to the results obtained in this section and Appendix A, the optically 

active oscillator model can be considered as the corresponding N-pole approximation to 
the relaxation function. The analytical forms of a classical and a quantum relaxation 
functions are 0ae same, and they are distinguished only by the formulae for the 
coefficients c. I, Eqs. (A4) or (A5)). Thus in the quantum case one does not need to 

determine a correct quantum correlation function for an NMO itself which is a rather 
complex problem. 

2~Applications of the non-Markovian oscillator model with exponential memory. 

In this subsection we shall apply the relaxation function of the NMO model with an 
exponential dependence of tPi(t ), calculated in Appendix A, for the description of 

ultrafast solvation dynamics. Let us,,~mtroduce the mean relaxation time of the ith 

oscillator x by the formula x = J" f(t)dt.  It is easy to show that x = ] ' (0)  = 
O 

~i(O)/to2i - Yi(O)/to2i, where ~i(p) is the Laplace transform of the memory function tpj(t), 

and Ti(O ) is the frequency dependent attenuation Ti(to ) for to = 0. For an ensemble of 

oscillators Zr =~ mi'~ri where mi= tl~ri(O)/~ ¢I:Jrj(0 ) is the normalized weight of 
i j 

oscillator i. 
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For the underdamped regime of the NMO model with an exponential dependence of  q~i(t) 

we obta~ (se2e Appendix A) 

fri(t) _ a +w ~- ~ { (2a+l)exp (aT)[(l+d) coswZ- - ~  (3+d) sinwT] - 2a exp[-(2a+l)T] } 
( 3 a +  1) '+w-  

(30) 
where a _+ iw and -(2a+1) are the roots of the denominator in Eq. (A8) for the Laplace 
transform i'd(p), a < 0, 2a+1 > 0, T=t~t, d = (4a+l)/(a'+w').  One can see from Eq. (30) 

that unlike the BO, the NMO has a non-oscillating component even for the underdamped 
regime. 

Recent experimental [4] and computer simulations [45-46] studies have shown that 
the subpicosecond solvation dynamics is characterized by a few components: an ultrafast 
Gaussian followed by slower exponentials. Let us apply the NMO model to the description 
of the solvation dynamfics. The,parameters of all NMOs used below correspond to the 
underdamped regime I, Eq. (30)). We shall consider the classical case when the relaxation 
function is proportional to the (classical) correlation function. Fig.9 shows expe- 
rimental data [4] (circles) of the time-resolved luminescence of LDS 750 in acetonitrile 
and their fitting by the model of  one (dotted line) and two (solid line) NMOs. One NMO 
describes well both the initial (Gaussian) and the long time behavior of  the experimen- 
tal data, similar to Kubo's stochastic modulation theory [19] and shows an oscillation 
for the intermediate range. The fit by two NMOs with equal normalized weigts (ml=m2--0.5) 

gives excellent results. ~ = 133 fs for one NMO and x = 113 fs for two NMOs. 
r r 

Two NMOs perfectly fit the solvation dynamics simulations for the Stockmayer 

[ • '~'*"~ ~ I ! ! I I f I | _ 

O. 8 I i  

i' 
0.( 0.2 0.4 0.6  0_ 8 

t,ps 

Fig. 9. Normalized relaxation (classical correlation) function of  LDS 750 in 
acetonitrile: Circles - experiment [4]; dotted line - fitting by one NMO 
with two parameters: cc I = 122 cm i and 71(0 ) = 271 cm -1, the parameter 0] 1 = 

104 cm -1 is determined from the bandwidth of the initial Gaussian behavior of 

f(t); solid line - fitting by two NMOs: o I = 189 cm -1, cx I = 913 cm -1, 

Yl(O) = 204 cm a, to 2 = 53 cm 1, o~ 2 =115 cm -1, y2(O) = 104 cm z. 
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solvent [45] (Fig. 10; "c = 468 fs) and for water [24] (Fig. l l ; ' c  = 128 fs). The 
r r 
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Fig. 10. 

Fig. 11. 

Normal ized correlat ion function S(t) for the solvation dynamics in S tockmayer  
solvent: Circles - simulation data [45]; solid lin2e 5 - fitting by two NMOs with 
equal normal ized weights: to 1 = 35 cm",  ( t  - cm ~, 7](0) = 199 cm ~, 

t o  = 47 cm l ,  a =542 cm l ,  72(0) = 31 cm l .  
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Normal ized correlat ion function S(t) for the solute in water. Circles - 
simulation data [24]; solid line - fit by two NMOs: o) 1 = 646 c m l  a 1 = 484 

c m ,  yl(O) = 16235 cm l ,  O)2 596 cm 1, a 2 =790 cm 1, T_(0) = 

606 cm -1, mx/m 2 = 3/2. 
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authors of [24] fit their microscopic semiclassical simulations by six BOs. The last 
example illustrates the strength of the NMO model with an exponential "memory" ~t ) .  Two 
such NMOs simulate the data instead of six BOs. Correspondingly, the number of the 
fitting parameters reduces to 7 for the NMO model instead of 17 for the BO model. It can 
be understood, since the NMO with an exponential memory corresponds to a higher order 
approximation to the real dependence of fr(t), than BO (see above). 

Thus, the NMO with exponential attenuation of the memory function is rather 
simple, and is an exactly soluble model for the optical response. The model of two such 
oscillators perfectly fits various experimental and computer simulations data on 
ultrafast solvation dynamics. 

3. Application to Solvation Dynamics. Elucidation of the Physical Nature. 

Let us consider the correlation function for the solvation dynamics process of a 
probe molecule in a dipole solvent. The interaction energy between a solute in 
electronic state n and the nuclear degrees of freedom of a solvent is given by the 
formula 

"~ = - J'dr p(r) E(n)(r) (31) 
n$ 

where p(r) is the nuclear part of the polarization operator of the solvent, E~n)(r) is 
the electric field created by the solute molecule in electronic state n. 

Let us determine the spatial Fourier transforms of p(r) and E(')(r): 

Pk = Sdrexp(ikr)p(r), E(~)(k) = J'drexp(ikr)E~n)(r) (32) 

Then we can express "W by Pk and E~)(k): 
n$ 

"~r~s = -(2r~)-3J'dk Pk E(~)(-k) (33) 

For isotropic media the latter can be represented as a sum of the longitudinal (L) and 
the transverse (T) parts: 

• ~r$ = _(2g)3j'dk [PLkE(Ln)(_k) + PrkE?)(_k)] (34) 

where the longitudinal components Pt.k and E(Ln)(-k ) are parallel to the vector k, and 

the transverse ones Prk and Er(n)(-k) are perpendicular to k. Apparently, Pt.k and E~n)(-k) 

are uncoupled from Prk and E(Tn)(-k). 

For the magnitude u we obtain 
$ 

u = W - W = (27C) 3 Y~ f dk E (-k) (35) 
s 2s l s  j = L , T  Pjk 12 

where E (-k) - E! l) (-k) - E!2)(-k). 
j 12  j j 

We shall calculate the correlation function Ks(t) = <Us(0)Us(t)> - <U2>s to second 

order in the solv~nt-solutg;interaction [19,2~7]: i t)Wso)]/_ 
Ks(t ) = Tr [u S exp {'h Wsot) u s exp {-(13 + Tr (-13Wso) exp (36) 

Using Eqs. (35) and (36), we obtain that Ks(t ) consists of two contributions: Ks(t ) = 

KsL(t ) + K$T(t ). The normalized correlation function for the j-th contribution (j = L,T) 

is given by the formula 

Sj(t) - Ksj(t)/Ksj(0) = J'dk [ Ep (k )  12 C(k, t ) /J 'dk I E~2(k) [2 C(k,0) (37) 

where 
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C(k,t) = Tr [Pj,-k Pjk(t)exp(-~Wso )]/Tr exp (-~Wso) (38) 

is the longitudinal (j=L) or the transverse (j=T) polarization correlation function, and 

i 
pjk(t) : exp (h Wsot) Pjk exp ( - h  Wsot)" 

We can express the Laplace transform of S(t) by the dielectric function of a 
J 

solvent(see Appendix B): 

"l(k, 0)] 1 J'dk[EL12 (k) 2 [e~t(k, p) _ E L 

gL(P) = P J'dk[ELl2(k ) : [eLt(k,o~) - eLl(k, 0)] (39) 

and 

1 .l'dklET12(k) : [e T (k,0) - eT (k ,p)]  

gT(P) = P  J'dk I ETI2(k) 2 [eT (k,0) - e T (k, oo)] (40) 
oo 

g(p) = fexp(-pt) S(t)dt. 
J J 0 

Apparently, S.(t) coincides with the normalized relaxation function f.(t) for the 
j rj 

classical (high temperature) case which we consider. Thus, formulae (39) and (40) 
express the Laplace transforms TrL(p) = gL(p) and Y r(p) = gr(p) by the dielectric 

function of a solvent. 
The fact that there are two contributions to the relaxation (or correlation) 

function (the longitudinal (L) and the transverse (T) ones) is the basis for modelling 
it by two (or more) different oscillators. It is worth noting, that for dipole solvation 
both the L and the T contributes [49]. In the case of ion solvation, only the L 
contributes [27,49]. 

Let us consider the long wavelength polarization fluctuation as it is the fastest 
mode that contributes to solvation dynamics [50]. In this approximation eL,r(k,p) = 

EL,T(0 ,p)  = e(p), s i n c e  ET(k=0, t .0  ) = EL(k-----O,f-O) [54], and the Laplace transform gL(p) is 

given by the following relation: 

1 e l ( P )  - e l  (0) 
(41) 

~L(p) = ~ e-l(oo) _ E-l(0) 

The Laplace transform of the time expansion (A3) can be written in the form [44]: 
oo 

1 + E c /p2n+l (42) 
~ ( p )  = ~ o= 

which can be considered as the Laurent-series expansion of ]'rj(p) about p = 0. The 

coefficients of this expansion are related to ] ' (p)  by the formula: 

cJn= (27zi)-1 § p2~ ~rj(P) dp, where the integration is over concentric circle 

centered at p = 0. 
Using the expression of "i'rL(P) = ~L(p) by the dielectric function of the solvent 

(41), we obtain 
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e - l ( p )  - e "l (0 )  
CLn = CTn = (2/ti)-I § p2n-l dp (43) 

e 1(0.) _ e~(0) 
Eq. (43) plays an important role in the model of an optically active NMO, since it 
relates the parameters of a NMO to an experimentally measurable magnitude: the dielectric 
function of a solvent. 

In the general case (k # 0), one must know the ,polarizatiqn correlation 
function C.(k,t) for the calculation of S(t) (or f( t ))  tEq. (38)). In principle, we 

J J 
can represent the Laplace transformation of the normalized function C.(k,t) /C.(k,0) in 

J J 

the continued fraction form similar to the representation of f (p)  in subsection 1 . In 

the latter case, the coefficients c (Eq. (An)) depend on k. However, a simple j, 
analytical form of the NMO model is lost for k-dependent coefficients c . .  

in 

In this context the following question arises. Suppose, we use the NMO model with 
coefficients c which does not depend on k (for example, with an exponential memory, 

jn 

used in subsection 2). Do the fitting parameters of this NMO have a physical meaning? In 
order to answer this question, we shall compare our NMO model with the results of the 
molecular hydrodynamic theory (MHT) [48,50] which have been compared [50] with the 
computer simulations [45]. 

The longitudinal correlation function CL(k,t ) can be related to the wave vector 

dependent longitudinal polarization P~Ln'r(k,t) 

APPENDIX C): 

PMvrr(k,t) CL(k,t) 

pMm'(k,O ) L~-([-70~ 
L 

i.e., the normalized correlation function 

calculated in Refs. 48 and 50 (see 

(44)  

normalized polarization l~Lh"r(k,t)/l~LWr(k,0). For an 

Laplace-transformation of pMrrr(k,t) is determined by [50]: 
L 

~Mrtr(k'P)Mi-rr - [p + 2f L (k)/'l:~ + 171'k2°2fL(k)/'l:z' ]-' (45) 

P (k,O) P + ~ P )  P + ~4  p) 
L 

where ~g,T(p) are the Laplace transformations of the time dependent rotational (R) and 

translational (T) friction, correspondingly; o is the solvent molecular diameter; 131 is 

the translational parameter which accounts for the relative importance of translational 
and rotational motions of the "solvent; ~i = (I/kBT)lr2"' I is the moment of inertia of 

the solvent molecules. The function f (k )  is given by 

f (k)  = 1-(P0/4~) C(ll0;k) 

where P0 is the equilibrium number density of the solvent, C(ll0;k) is the (110) 

component of the spherical expansion of the wave vector and orientation dependent number 
density. 

Using Eqs. (27),(29), (37) and (44)-(45), one can see that in the long wave length 
limit (k-->0), the right hand side of Eq. (45) has the form of the Laplace transformation 
of the relaxation function ~(p)  for an NMO, if 

CL(k,t)/CL(k,0 ) is determined by the 

ion solvation the 
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2f(0) / '~  = tO 2 = -c 
j jl 

The short time behavior of  the solvation dynamics is determined by the long wav~ 
length polarization fluctuation [50] and has the following form: - exp {- 2 

[2f(0)/x21]t2}. The magnitudes in this exponent have been calculated [50] for the 

Stockrnayer solvent model [45]. According to these evaluations, [2f(O)/z21]'/2= 41.6 cm 1. 

Let us compare the last value with the fitting parameters of our model consisting 
of two NMOs. Its short time behavior is determined by - 1 - ½ (ml0~ ~ 2 + mlt.02) t- + ... = 

exp[- ½ (mlo~21 + mlt022)t2]. Using ml= m z = 1/2, to 1 = 35 cm a and o z = 47 cm-', we obtain 

that ( m  o 21 + m~°22 )~t2 = 41.4 cm -x. Thus, our fitting frequencies c0x and to_ agree with 

the value of  the parameter f(O)/xz I which determines the orientational motion in the 

Stockmayer liquid. 
Furthermore, Bagchi and Chandra have evaluated [50] the Einstein frequency f~0 for 

the translation motion of the solvent which determines the initial decay of the velocity 
correlation function. According to their calculations, fl0 = 35.5 c m  for the system 

under consideration [45]. This value is very close to the frequency to 1 = 35 cm "I of one 

of  the NMOs. 
Taking into account the translation motion of the solute ion itself, it is possible 

to obtain the following evaluation for the Einstein frequency of the solute [50]: 

f~ = f~ ~ (46) 
M 0 

where m and M are the masses of the solvent molecule and the solute ion, respectively. 
The ratio m/M is equal to 2 for the model used in Ref.45. Using this value and the 
evaluation f~0 = 35.5 cm", we obtain from Eq.(46) f/M --" 50 cm l .  The last value is close 

to the frequency to 2 =47 cm 1 of the second NMO. 

Thus, the fitting frequencies of our model correspond to the frequencies of  the 
real motions in the solvation model used in Ref.45. There is only offe (L) contribution 
to the relaxation (correlation) function of  model [45] due to the ion character of  the 
solvation. Using two NMOs in our fitting model, is the payment for the local character 
of the model (k=0) and/or the assumption of  the exponential memory of a NMO. 

There are both the longitudinal and the transverse contributions to the correlation 
function in simulations [24] of  a probe dipole solvation in water due to the dipole 
character of  the solvation process. In principle, it can be the justification for 
modelling the correlation function by two NMOs. Furthermore, in classical simulations of 
water, the rotational librations have a peak around 550-600 cm -I [53]. The fitting 
frequencies of  both NMOs (see Fig. l l )  are close to this value (to 1 = 646 cm" and o 2 = 

596 cml) .  
Thus, according to this discussion, the model, consisting of two NMOs with the 

exponential memory, reflects real motions which occur in solvation dynamics of a solute 
molecule. 

8.Summary 

In this work we have developed theoretically and experimentally the principles of a 
spectroscopical method based on resonance transient population gratings for a 
quantitative description of solvation dynamics of  large molecules in liquid solutions. 
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We have adduced new experimental data concerning the solvation dynamics of  LDS 750 in N 
- monosubstituted amides - ethylacetamide and butylacetamide. For a better comparison of 
theory and experiment we have included in our model a non-mirror-synunetry absorption and 
luminescence spectra of the molecule LDS 750. 

We have constructed unified theoretical basis for previous empirical models of an 
optically active oscillator. The conception of  our approach differs from other 
approaches. We consider the relaxation function and construct its asymptotic (long-time) 
series expansion that corresponds to the fit of  the relaxation function by two-, three- 
(and so on) pole formula. As a first approximation we obtain a formula that corresponds 
to a classical BO model, as a second approximation - a formula that corresponds to the 
classical NMO model with the exponential memory, and so on. In this way, we have 
obtained an important conclusion that the optically active oscillator model can be 
considered as the corresponding N-pole approximation to the relaxation function. 

In our systematic approach, the parameters of a NMO oscillator are not empiric 
values and can be calculated. In the long wavelength approximation (k = 0), we have 
connected them with an experimentally measurable magnitude: the dielectric function of a 
solvent (Eqs.(27), (29), (43)). 

In the general case (k * 0, nonlocal approximation), the parameters of  an optically 
active NMO are functions of k. However, a simple analytical form for the relaxation 
function of  a NMO is lost for k-dependent parameters. In order to preseve the simple 
analytical dependence, we consider parameters of a NMO oscillator as k-independent. In 
this case the NMO model becomes a semiempirical one. Nevertheless, using the simple NMO 
model with an exponential attenuation of  the memory function for the fit of molecular 
dynamics computer simulations of a Stockmayer liquid [45], gives real values for the 
frequencies of  motions occurring on ultrafast solvation dynamics (see the end of the 
section 7.3). 

APPENDIX A 

In this Appendix we shall construct an approach to fo.(t). Suppose that ]~j(p) has 

only simple poles Pro" Then the function f ( t )  can be represented in the form [40] 

f ( t )  = E d m exp (pro t) (A1) 

where d m are the residues of the function ]'rj(P ) at P=Pm" dm are the coefficients at 

(p-pro)'1 in the Laurent-series expansion of  ]~j(p). The Laplace-transformation ] ' (p )  

can be represented as 

]'j(p) = m ~ din(p-pro)'1 (A2) 

Let us turn to the calculation of  the preexponential factors in Eq. (A1) for 
f ( t ) .  Using Eqs. (24)-(25), we shall obtain the power series expansion of f ( t )  in t. 

Such an expansion will content only even powers of t due to the evenness of • (t) [34] 

( O ( t )  = ~ . ( - t ) ) :  
rj 

¢~ t 2 n  
f ( t )  = 1 + 5" .c  ~ (A3) 

r l = l  

2 where c = - ~ Im <u.(0)u!2n'l)(0)>, (A4) 
J J r j  



1 4 5  

u!:~l)(0) --- d2nl  t=0 
j dt2~--~- 1 uj (t) 

For high-temperature (classical) case 

c = (- 1)n <u! n)(0)u!")(0)>/<u2(0)> (A5) 
jn J j J 

where we used the relation <u!2")(0)u! °) (0)> = (-1)"<u!~)(0)u!")(0)>. 
J J J J 

For the classical case the expansion (A3) with coefficients (A5) coincides with the 
corresponding expansion of the classical correlation function [41] due to the relation 

¢1 (b .(t) = J3<u(0)u.(t)>. 
r j  .I J 

Comparing Eqs. (A1) and (A3), we obtain that the coefficients c must satisfy to jn 
the relation: 

cjn = mE dmp2~ (A6) 

and 
a) Z d = 1 b) ~ , 2n-I 

m m 2"mQmP m = 0 (AT) 
Let us construct some approximation to f .(t), taking into account successively two 

rj 

(N=2), three (N=3) (and so on) terms in the right hand of Eq. (A2). Such an approach 
corresponds to the fitting of f ( t )  by two-, three- (and so on) pole formula. 

Apparently, such an approach has a character of the asymptotic (long-time) series 
expansion of  f ( t )  [40]. 

We shall write down the fractions obtained by such a way, in the form of continued 
fractions. Their terms can be calculated by formulae (A6)-(A7), besides the last one, 
which will be an empirical constant. For N = 2 we have formula (27) and For N=3 we 
obtain formula (29). Formulae (26) and (27) can also be obtained in the framework of a 
continued-fraction representation of the time correlation functions, obtained by Mori by 
the projection operator formalism [41,43]. Our method is simpler, and therefore we hope 
that our derivation will be understandable for a broader audience. 

Let us calculate the relaxation function of the NMO with an exponential "memory" 
corresponding to three-pole approximation. Passing to dimensionless variables s = p/(x, q 
= ~(0)'c, and z = (zz, we obtain from Eq.(29): 

1 s2+s+q/z (A8) 
" i ' ( p ) -  ~ s3+ s2+ (q /z) ( l+z l )s+q/z2  

Here we have omitted the subscript 'T' at ct, s, q, z, 7(0) and ~ for brevity. Computing 
r 

the inverse Laplace transformation of Eq.(A8), we obtain f i(t). 

The character of  the relaxation function f ( t )  is determined by the roots of the 

polynomials in the denominator in the right-hand side of Eq.(A8). Using the properties 
of a cubic equation [44] , one can show that this polynomial has one real root and two 
conjugated roots, three real roots of which at least two are equal, or three different 
real roots, if the quantity Q = (q-ql)(q-q2_) is positive, zero, or negative 

respectively. Here 

2 
z [(zE+20z-8) +_ z m (z-8) 3r2] (A9) 

q l a -  8(z+1)3 
Correspondingly for Q > 0 (underdamped regime) we obtain Eq.(30). 
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APPENDIX B 

In this Appendix we shall express the Laplace transform of Sj(t) by the 

dielectric function of a solvent. According to the linear response theory [47,48], for 
the classical (high-temperature) case the following relations are held: 

** dCL°t (k,t) 
eLl(k,t,0)_l _ 4 r ~  J~dt exp (Rot) (B1) V dt  

0 
dCtr°t(k,t) 

1-eT(k,o) = ~ 7dt  exp (itot) d t (B2) 
0 

where eL,r(k,to) are the dielectric functions, V is the total volume of the system and 

C t°t is the correlation function of the total polarization operator which is the sum of 
J 

the nuclear contribution p and the electronic one pet. If we neglect correlations 
between p and pet [27], C aot can be partitioned into a nuclear part C and the 

J J 
electronic one C et. By subtracting Ce I from ct° ~, one can relate C. to a 

J J J J 
corresponding dielectric function 

eLt(k,~) _ eLl(k,~) 4 ~  ~ dC (k,t) = - V - -  f d t  exp (Rot) L (B3) 
dt  

. 0  dC (k,t) 
eT(k,~) - eT(k,t0) = ~ - -  J'dt exp (itot) Z dt  (B4) 

0 
where e(k,,~) represents the limit of e.(k,to) for optical frequencies. 

J J 
One can consider the right hand sides of Eqs. (B3) and (B4) as the the 

Laplace transform of functions 4rc~ dC  (k,t)  J for the Laplace variable p = -ito. We V" dt  
obtain: 

V [E~(k, p) - eL'(k ' oo)] = p~L(k,p) _CL(k,O ) 

V 
[e r (k,~) - er(k, p)] = p~r(k,p) - Cr(k,0 ) 

where ~.(k,p) = J'dt exp(-pt) C.(k,t) 
J 0 J 

and 
V [eLl(k, ~ ) - e L l ( k ,  0)] C L ( k , O  ) = 

V 
CT(k'O) = ~ leT (k,O) - ~:T(k,**)] 

(B5) 

(B6) 

Using Eqs. (37), (B5)-(B6), we can express the Laplace transform of Sj(t) by the 

dielectric function of a solvent (Eqs.(39) and (40)). 

APPENDIX C 
Let us relate the longitudinal correlation function CL(k,t ) to the wave vector 

dependent longitudinal polarization LPMm'(k,t). The longitudinal field Etn)in formula 
L 
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I 34) is the electric field that would arise from the solute molecule in electronic state 
n>. The nuclear polarization corresponding to the solute transition between the ground 

and excited states is related to the field difference AE (k,p) = E(1)(k,p) - E(~)(k,p) L L L 
by the polarizability tensor tensor t~ L [51]: 

PL(k,p) = ~tL(k, p) AEL(k,p) (C1) 
where 

OtL(k,p ) = 4~t[ei~l(k, o~) _ gT~(k, p)] (C2) 

Using Eqs. (C2) and (B5), we can represent PL(k,p) in the form: 

PL(k,p ) _ (4~) =j3 - ~V-" - -  [CL(k'0) - P~L (k'p)] AEL(k'P) (C3) 
According to the Frank-Condon principle, an electronic transition occurs 

instantaneously. Therefore, one can consider that the external field is switched on also 
instantaneously, so that [51] 

AEL(k,p) = AEL(k)/p (C4) 
Inserting (C4) into Eq. (C3), we finally obtain 

- _ C L ( k , 0 )  
~L(k,p) = ( ~  [- ~ - ~L(k,p)] AEI(k) (C5) 

Computing the inverse Laplace transform of both sides of Eq. (C5), we obtain: 

PL(k,t ) = PL(k,.~) _ ( 4 ~ ) ~  CL(k,t ) AEL(k) (C6) 
where 

PL(k, *o) = ( ~  CL(k,0 ) AEL(k ) (C7) 
since CL(k,~ ) = 0 according to the properties of correlation functions. 

The polarization P(k,t) (Eq. (C6)) is determined in the spirit of the Born theory 

ofsolvation [51,52]: the charge (or the charge distribution) is instantaneously created 
at t=0 on a tagged particle which was in thermal equilibrium with the solvent before the 
external field was applied. However, the MHT considers an inverse situation: the decay 
of the equilibrium solvation energy after the charge of the solvated ion is turned off 
[50]. Therefore, the polarization PL(k,t) is related to the polarization calculated from 

the MHT by the expression: 

= PL(k,~) - P~Lrrr(k,t) (C8) PL(k,t) 
Comparing Eqs. (C7) and (C8), we obtain Eq.(45). 
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