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Abstract

We developed theoretically and experimentally the principles of a spectroscopical
method based on resonance transient population gratings for quantitative description of
solvation dynamics of large molecules in liquid solutions. The solvation dynamics of
LDS 750 in N -monosubstituted amide, ethylacetamide and butylacetamide have been
measured. This class of solvents exhibits exceptionally large static dielectric
constants. The solvation dynamics of LDS 750 in all solvents consists of ultrafast as
well as slow components.

A theoretical basis for solvation dynamics study of complex molecules in solutions
by resonance nonlinear spectroscopy has been developed. We have introduced a model of an
optically active non-Markovian oscillator (NMO) for the description of solvation
dynamics in nonlinear optical experiments in a systematic way. It has been shown that an
optically active Brownian oscillator and different NMO models can be considered as
successive long time approximations to a real correlation function of an optically
active oscillator. The model of two NMOs with an exponential memory function describes
accurately various experimental and computer simulations data of ultrafast solvation
dynamics. We have compared the latter model with modern theories of solvation.

1. Introduction

Ultrafast time-resolved spectroscopy has been applied to probe the dynamics of
electronic spectra of molecules in solutions [1-5]. Typically, a fluorescent probe
molecule is electronically excited and the fluorescence spectrum is monitored as a
function of time. Relaxation of the solvent polarization around the newly created
excited molecule state led to a time dependent Stokes shift of the luminescence
spectrum. Such investigations are aimed to study the mechanism of solvation effects on
electron transfer processes, proton transfer, etc. [1-5].

In recent ultrafast experiments the fast (subpicosecond) components in the
solvation process have been observed [4-5]. Transient resonance degenerate four-wave
mixing has been used for the observation of ultrafast solvation dynamics [6-8] (see also
references 9-10). In this method (figure 1), two short pump pulses with wave vectors k|

and k_ create a light-induced grating in the sample under investigation with a wave
vector_q = k1 - kz' The grating effectiveness is measured by the diffraction of a time
delayed probe pulse k3 with the generation of a signal with a new wave vector ks = k3 +
(k1 - kz). This method is characterized by a high time resolution and provides

additional spectroscopical information, in particular it senses the dynamics in the
ground electronic state which is principally absent in luminescence measurements.
One must distinguish between the transient resonance degenerate four-wave mixing
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experiments with very short pump pulses [6,9-10] t_ ~ 10 fs from the experiments with
relatively long pulses with t p~ 150 fs (see this work and [7-8]). The experimental

conditions of our transient degenerate four-wave mixing experiments have been designed
to provide similar information to the ones given by time-resolved luminescence
(TRL)studies. TRL experiments investigate the hot luminescence processes occurring after
the completion of the electronic transition phase relaxation (with a characteristic
decay time T’) and during the vibrational and solute-solvent relaxation in the excited
electronic state. Therefore, we conducted our resonance four- wave mixing experiments
[7-8] in such a way to prevent the polarization gratings and to preserve the population
gratings. The polarization gratings are destroyed during the phase relaxation time T’ of
the electronic transition, and the population ones are destroyed during the vibrational
relaxation time T

We shall consider molecules with broad structureless (or weakly structured)
electronic spectra for which the following inequality is fulfilled:

6, >> 1 (1)
where o, is the second central moment of an electronic spectrum. It has been
demonstrated that the following times are typical for the time evolution of the system
investigated [11-15]:

c;m < T << T 2)
where 0';-1/2 plays the role of the reversible dephasing time of an electronic transition,
T = ('ccc;’)”3 plays the role of the irreversible dephasing time, and T plays the role

of the relaxation time of populations. The typical value of the irreversible dephasing
time for complex molecules in solutions for usual conditions T’ = 20 fs [11]. Therefore,
the character of the response of the system under study (0217; >> 1) in degenerate

four-wave mixing experiment depends on the relation between T’ and the pump pulses
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Fig. 1.  Geometry for transient grating spectroscopy.



duration tp [11-12].
In our experiments the pump pulse duration tp>> T (tp ~150 fs). Relatively long
pump pulses tp >> T’ of frequency ® create a hole in the initial thermal distribution

relative to a generalized solvation coordinates in the ground electronic state (Fig. 2)
and, simultaneously, a narrow spike in the excited electronic state. These changes are
measured by the probe pulse at the same frequency ®. In the next sections we shall term
degenerate four wave mixing spectroscopy with long pump pulses tp>> T’ as resonant

transient population grating spectroscopy (RTPGS).

In recent papers [7-8] we have reported on solvation dynamics studies using RTPGS.
The solvation dynamics of LDS 750 dye in alkanols like metanol, ethanol, propanol and in
diols 1,2-ethanediol, 1,3-propanediol and 1,4-butanediol have been measured. In this
study we extended our previous RTPGS measurements to a new class of associative liquids
- the N-monosubstituted amides. This class of solvents exhibit exeptionally large static
dielectric constants.

We have previously developed the theory of the RTPGS for solvation dynamics
study using the approach of four-time correlation functions and obtained expressions for
the case when the perturbation of the molecular nuclear system during the electronic
transition is a Gaussian quantity [7-8,16]. In particular, the latter reduces to the
mirror symmetry of the equilibrium absorption and luminescence spectra. However, the
absorption and luminescence spectra of the molecule LDS 750, used in our experiments, do
not satisfy to the law of the mirror symmetry. Therefore, in Ref.17 we have developed
another approach to calculate the R’I;II;GS signal. We took into account the conditions

(1)-(2), and also tp > T = (‘Ecco'l) ab initio. Such an approach allows us to solve
concrete problems, in particular, to generalize the theory [7-8,16] for the case of
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Fig. 2. Potential surfaces of the ground and the excited electronic states of a
solute molecule in liquid. One dimensional potential surfaces as a function of a
generalized solvent polarization coordinate.
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arbitrary shapes of the intramolecular spectra (non-Gaussian case). Here it will be used
for modelling the RTPGSsignal from the molecule LDS 750.

Furthermore, theories [7-8,16] and also the theory presented in this paper, connect
the nonlinear optical response of a molecule in a solution with the correlation function
S(t) that describes solvation dynamics (see below). The analytical form of S(t) can be
arbitrary in principal. Its calculation is an independent problem.

For the aim of the description of linear and nonlinear response, a model which
should be described by a simple enough correlation function S(t), is needed, in order to
obtain results which can be treated, to achieve a comparison with an experiment. On the
other hand, such a2 model must be sufficiently real. In this regard, recently stochastic
models were studied on a large scale [5-6,9-19] . The model of an optically active
Brownian oscillator (BO) became very popular in linear absorption [20], Raman scattering
[21], four-photon [6,22-25], and time resolved luminescence [5] spectroscopy. Yan and
Mukamel have introduced this model for an optical response by a systematic way {23]. The
popularity of the optically active BO model 1s due to the very simple analytical form of
its correlation function. Such a model was broadly used in spite of the fact that its
correctness criteria [21] is often not fulfilled [26]. In contrast we have proposed [26]
a model of an optically active non-Markovian oscillator (NMO). Here we introduce a model
of an optically active NMO by a systematic way. We show that an optically active BO and
different NMO models can be considered as successive long time approximations to a real
correlation function of an optically active oscillator. We obtain simple expressions for
the relaxation and correlation functions of an NMO with an exponential memory function,
and apply them to the description of solvation dynamics of a probe molecule.

It is worth noting that the concept of an optically active NMO exceeds the limits
of being able to describe only the solvation dynamics. It is also interesting from the
point of view of a general description of vibronic transitions in linear and nonlinear
optical experiments.

2. Theoretical background

Let us consider a molecule with two electronic states n=1 and 2 in a solvent
described by the Hamiltonian

H =
0

™M

In> [E -ty + W (@] <l E, > E 3)
1 2

n

where En and 2’yn are the energy and inverse lifetime of state n, Wn(Q) is the adiabatic

Hamiltonian of a reservoir R(the vibrational subsystems of a molecule and a solvent
interacting with the two-level electron system under consideration in state n).
The molecule is affected by_)electromagnetic radiation of three beams

Ert) = E'(r) + E@) =3 ) exp (ions ce.
> 3 -
where £(rt) = X & (v exp (ik r).
m=1
Since we are interested in the solvent-solute intermolecular relaxation, we shall
single out the solvent contributions to En and Wn(Q),

- 0 e
En = En + <VnS, 4)
W@ = Woam ¥ Wne Wns™ Weo + Was )
where WSO is the Hamiltonian governing the nuclear degrees of freedom of the solvent in
the absence of the solute, WnM is the Hamiltonian representing the nuclear degrees of
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freedom of solute molecule, Eﬁ is the energy of state n of the isolated molecule, Wns

and V:ll describe interactions between the solute and the nuclear and electronic degrees
of freedom of the solvent, respectively. It is possible to replace the operators V:lI in
the Hamiltonian by their expectation values <V°'> [27].

A signal in any method of four-photon specu'oscopy can be expressed by nonlinear
polarization PN The signal power Is in the ks direction at time t is proportional to

the square of the modulus of the corresponding component of the cubic polarization

P(3 .

1~ [P 12 (6)
In pulsed experiments one usually measures the dependence of the signal energy Js on
the delay time T of the probe pulse relative to pump ones:

T~ | PPyl )

Our main interest is in the solvation dynamics irrespective of the behavior of the
molecule. Numerous experiments [28-30] show that a Franck-Condon molecular state,
achieved by an optical excitation, relaxes very fast, and the intramolecular spectra
form within 0.1 ps (concerning the interpretation of experiments [28] see Ref. 31).
Therefore, we shall consider that in our experiments the intramolecular relaxation
takes place within the pulse duration (tp = 150 ps). More exactly, there are fast and

slow steps in the relaxation of a Franck-Condon state: the faster component is mainly
determined by the intramolecular relaxation while the slower step is determined by the
intermolecular relaxation. For these conditions, one can consider that a molecule is in
the equilibrium state characterized by the equilibrium density matrix P =

exp(-BW T, exp(-BW ), where k=1,2; B=1/kT and Tr, denotes the operation of taking
Ry
track with respect to the molecular degrees of freedom.
We shall calculate P® *(r.t), using a general theory [17]. For the conditions
under consideration, the formula for the positive frequency component of the resonance
polarization takes the following form [17]:

‘9
Py = - ND (D, £(ry) {i[F (00 - F(P(m,(x),t)] + [0 (00 - (D(p(w,m,t)]}
where N is the density of solute molecules, D17 is a matrix element of the dipole-moment
operator taken with respect to the electron wave functions,

(o) ,O,t) = I do Fa (W(m) F (u) -0 - o, W)

are the spectra of the non-ethbnum absorpuon (o) or luminescence (@) of a mole>cule
in solution, o = (E E)/h is the frequency of the pure-electronic transition 1 <—

(w J0,t) and

Foon(®@) = ﬁ ;[, dt Tr, [exp('_*:l/h W, b

are the corresponding ' mtermolecular (s) and "intramolecular” (M) spectra;

T) exp(im W 1)) pmM] exp(-ie’t)  (10)

®)

®



128

Fa@(m , @,1)
[63] -(1)1

(0) W) = = f do’
are the non-equlhbnum spectra of the refraction index which are connected with the
corresponding spectra Fa (p(ml,u),t) by the Kramers-Kronig formula, P is the symbol of the

principal meaning.
"Intermolecular” spectra F (m ,o,t) are determined by the solvent contribution

(due to the fact that the quantmes of the type of u, = W W §* 0) to the electronic

spectra. In the four-photon approximation they can be wntten by Eq.(14) (see below).
Let us limit ourselves by the Gaussian value u,. The Gaussian approximation is

valid for the description of the intermolecular relaxation [27,32]. The interaction
energy of the solute molecule with its surroundings can be represented as the sum of the
energy of interaction with the individual solvent molecules. Accordingly, the guantity
us(t) can be also represented as a sum us(t) = ? usj(t) of random variables usj(t)

associated with jth solvent molecule, correspondingly. The number of such solvent
molecules (j) can be quite large (in the absence of specific chemical interactions). In
addition, the contributions us,'(t) can be considered for a liquid as weakly correlated.

According to the central limit theorem of the probability theory [33], these properties
of usj(t) permit one to consider the magnitude us(t) as a Gaussian stochastic function

[32].
Using the Gaussian and four photon approximations, we can obtain the following

expression for the spectra Foc (p((nl,a),t) [173:

_ - I p 2 2 = ZPR , ¢ ~ ,
Fuo@o) = % = ¢ d12|D2] f(r,t-tz)l fi dw'de” F, (@) - Fg (06, @) -

2n° o
oc(pM(m”) Fo (w1'ma,(p’12) (12)

t
(@D = + V0 I dr, |D & (rt1 )l- ff dw'de” Fy, (@) - F (06 -0 -

n’

@") X, (wlu) 1) (13)

Fo oM o 2

where

F 2 " exp { - Lo -0y gtx)T } 14
a,(ps( a(P 2) =( 7'17(7('c )" exp *‘2—0-—(,5—?— (14)
are the changes related to non-equilibrium solvation processes in the absorption (Fa)

and the emission (F‘P) spectra,

Xo,0s( P Q0% = Fo, 5@ Q0%
are the changes related to non-equilibrium solvation processes in the refraction index,
Erfi(x) = 3 exp(y’) dy,

T‘)

26_-Im [ S(x) dx, (16)
s 0

o ® ('cz) =0+ o+ (“)'“’21“”) ReS(TZ) - a(a,cp)(p

an

) Eefi[© " P00 ot (15)
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8(a,(p)(p is the Kronecker symbol (8((1 oo Sa(p_ 0 for o, (‘c ) and S(Q 0 S(P(P— 1 for
o (T )) (1) =0 +0 !/2 W, = =2Tr(u p ) =2 <ug > is the solvent contribution to
the Stokes shift between the equ111br1um absorpuon and emission spectra, p denotes
<u (O)u (t)> - <u>7 S@) is

2 (<u (0)> - <u >) is the

]

the equilibrium density matrix of a solvent, hlosz(t)

]

the normalized solute-solvent correlation function, G,

contribution of the solvent to the second central moment of both the absorpnon and the
luminescence spectra, us(t) = exp ((i/h)Wll) ug exp ((-i/h)Wlt),

o(t,) = o, (I-ReZS(‘rz)) 17)
is the time dependent second central moment,

(uym) = (21tc ) exp [((D—(D)/ZO’ ] (18)

is the equlhbnum solvem contribution to the absorption spectrum. We do not limit our
consideration here by the classical (high-temperature) approximation for the solvation
dynamics. Let us consider this issue in more detail. In the general (quantum) case, the
correlation function S(t) is complex and it is not an observable quantity. Therefore, it
is difficult to treat its physical meaning. It is more convenient to deal with the
relaxation function d)r(t) which describes the relaxation of a system after removal of

the external disturbance [34]. Unlike the correlation function, CDr(t) is always a real

observable function.
Let us introduce the Fourier transforms of G, S(t) and d)r(t):

oo n’c S(t)
[‘;g‘u‘g ] = L5 dt explion) [ © (t) ] (19)
s(w) and ¢(w) satisfy the following relation [34 351
s() = {na/1-exp(nep]} o(w) 20)
Using the inverse Fourier transformation, we obtain from Eq. (20):
1 < hof e,
() = g5~ [2 T © coth 235 () coswt do -i —1- ] Q1)
28 0

The latter allows one to find the correlation function if the relaxation function is
known!. Using Eq. (21), we obtain the following expression for the time dependent
frequency of the nonequilibrium emission spectrum

(D(P('tz) = 6)21+ o’ + (0)—6)21-(0’) ReS(‘cz) -n’t d>r(0) [l-fr('rz)] (22)
where fr(t)= L] r(t)/dJr(O) is the normalized relaxation function. For the classical limit
(hof << 1) hzozsReS(’co) = B’ltbr(to), i.e. the normalized real part of the classical
correlation function coincides with the fr(t). In addition, for the classical case

IFor high-temperature (classical) case (h@f << 1) ¢(®) = ﬁscl((x)). The substitution of

the latter expression for ¢(®) in Eq. (20) reduces to the relation between s(®) and
scl(u)), obtained in a different way [26].
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O, = u)slh']ﬁ’l, therefore

@, 0 =ra, 23)
In the last case, Eq. (22) for the frequency m(p(tg) reduces to the expression we
obtained before [7-8,16].

3.Comparison of nonlinear optical spectroscopy with TRL

The TRL signal is determined by the value F(p(mf o, t) (Eq.(9)), where of is the

radiated frequency, ® is the excitation frequency. One can see the close comnection of
the TRL spectroscopy with nonlinear optical spectroscopy. The corresponding signals are
determined by the nonequilibrium absorption and emission processes. The TRPGS signal is
determined by both the non-equilibrium processes of the absorption and emission and also
by corresponding refraction index spectra at the frequency @ {see Egs. (6)-(8)). In
contrast to the TRPGS, the TRL signal is determined only by F(p(a)f, o, t), i.e. by the

relaxation processes in the excited electronic states. However, in TRL spectroscopy, the
whole spectrum is measured while in RTPGS only the excitation frequency is monitored.

It is worthwhile noting that these conclusions have been obtained without using the
four-photon and Gaussian approximations.

4.Modeling RTPGS signal

Let us use the developed theory for modeling RTPGS signal. Fig. 3 illustrates the
time behavior of the signal J 5(1:) which was calculated for the limit of short pump
pulses by formulae (7), (8), (12)-(18). The shapes of "intramolecular” spectra Fa (pM(w')
are modeled by the same dependence as that in Refs.[7-8,16], but %gneralized for the

case of non-mirror-symmetric spectra F(PM((D’) and F 0LM((:)’): FaM(m’) ~3 _:/1" (xa+1) where

T(x+1) is the gamma-function, x, = (-0 /(4w/3), and Fy (@) ~ § Pr(x ot o =

(w’-mel)/(2m0/3). We used the following values for the parameters: a)sl(ZGZS)'”"’= 2,8 =
=12 _ e " 7 %

1.5, w0(20‘25) = 1.14. The "intramolecular” spectra FaM((o) and F(pM(a)) for these

parameters are shown in Fig. 4 in the form of the equilibrium spectra FaM (u)-md) and
F(w(wel-m) when the contribution from the solvent is absent. The equilibrium spectra of
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the molecule in solution F& (0-0,) and F:p (0, -00_-) are also shown in Fig.4. The
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Fig. 3. Model calculations of the RTPGS signal (a); the solvation correlation function
(b) consists of a Gaussian followed by three exponential decays (formula (23a));
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luminescence and absorption spectra of a molecule, respectively, when the solvent
contribution from the solvent is absent; 3 and 4 are the equilibrium spectra of a
molecule in solution. The arrow shows the relative position of excitation
frequency © for the four-photon signal calculations (Fig.3).
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lattersare similar to the absorption and luminescence spectra of the molecule LDS 750 in
solution used in our experiments.

It follows from Egs.(7)-(9), (11)-(16), (22) that the signal JS(I) depends on the
excitation frequency ®. We chose ® = o, + wsx/2 which approximately corresponds to the

experimental sitbation. We use here the following form for the correlation function
S(t):

S@t) = a exp(-astz) + (l-aa-a“- a6-a8) exp (-alt)+a4exp (-ast) +a6exp(-a7t) +
+ asexp(-agt) (23a)

The first addend in expression (23a) corresponds to a fast Gaussian component,
observed in [4]. The second one corresponds to the relatively fast exponential component
with an attenuation time of 200-400 fs observed in [4]and in our experiments. The third
component corresponds to a slower attenuation with a decay time of the longitudinal
relaxation T It is worth noting that such a division by different contributions to

the correlation function is purely formal, and is used here to impart the realistic form
of the correlation function. As a matter of fact, both the short and the long time
components of the correlation function are manifestations of one physical process. We
shall discuss this issue below. We also showed in Fig.3 the time dependence of the
corresponding correlation functions S(t), used for the calculation of corresponding
signal JS (7).

One can see that the dependencies S(1) and JS(’c) are very similar (but not
identical), and the signal JS(T) reflects the fine details of S(t). Fig. 5 shows the

experimental RTPGS signal of LDS 750 in 1,3-propanediol [7-8]. One can see that the
experimental (Fig. 5) and the theoretical (Fig. 3) behaviours of the signal are similar.
Thus, the RTPGS can be used for the ultrafast study of the solvation dynamics.

.01

Intensity(a.u.)

| ¢ " + —N "
001 0.1 1.0 10 100 1000
t,ps

Fig. 5. RTPGS signal of LDS 750 in 1,3-propanediol.
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5.Experimental Details

The laser source consists of a CW mode locked amplified dye laser. Detailed
experimental description of the system is given in references [7-8]. A small portion of
a CW mode locked Nd:YAG 1.06 um radiation is amplified by a CW Nd:YAG regenerative
amplifier operating at 500 Hz. The doubled frequency output of the amplifier was used to
amplify the ultrashort dye laser pulse 140 fs FWHM, 1 nJ generated by a synchronously
pumped dye laser. A dye amplifier consists of three flowing dye celis was pumped by the
regenerative amplifier second-harmonic pulse. The dye laser amplification is achieved by
DCM dye to ~15 uJ with a pulse width comparable with the non-amplified pulse.

In the four wave mixing optical setup the laser pulse was split into three beams.
Optical delay lines were used to overlap in time the pump beams and to control the time
delay of the probe beam. The three beams (parallel polarization) were focused onto the
sample by a single lens of 50 cm focal length. In DFWM experiments the signal beam exit
the sample at a unique direction kS=(l(1—k7)+k3 and therefore it is easily separated from

the three generation beams.

LDS 750 (styryl 7) was purchased from Exciton and was used without further
purification. The solvent used were either analytical or of a spectroscopical grade.
Samples were circulated in a flowing cell of 1 mm pathlength.

6.Experimental Results

Time-resolved four-wave mixing signals of LDS 750 in ethylacetamide and
butylacetamide are shown in Fig.6. The signals were collected with relatively low time
resolution by scanning the probe beam delay stage at 0.5 ps time steps. As seen from the
figure the signal decay curves for LDS 750 in these solvents are nonexponential and
consist of several time domains. The long life time component of LDS 750 in both liquids
we attribute to the decay of the electronic population grating. The excited state

3 0.84:

3, 1

N 0.6+ “\

2 0.4+ butylacetamide
D 0.2-

R 0.0 : ethylacetamide n

¥ T =1
0 50 100 150 200

Time [ps]

Fig.6. RTPGS signals of LDS 750 in ethylacetamide and butylacetamide solutions.
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lifetime of LDS 750 in these liquids is about twice longer than the longest decay

1.09 :
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L 0.6_ . --....-..

s 044 .
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Fig.7. RTPGS signals of LDS 750 in both amides and in 1,3-propanediol
solutions.
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Fig.8. High time resolution signal of the first 2 picoseconds of LDS 750 in
ethylacetamide and butylacetamide solutions.
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time of the DFWM signals since the DFWM signal is proportional to |P®* |2 and PO
decays as exp (-1/T 1) where T1 is the excited state lifetime.

The shorter time components of the DFWM signal of LDS in ethylacetamide and
butylacetamide are shown in Fig.7. The signals are shown on a time scale of
20 picosecond with 50 fs time steps. Each of the decay curves shown in Fig.7 consists of
several time components. All of these time components we attribute to the complex
solvation dynamics of LDS 750 in acetamide solvents.

The longest component can be approximately fitted to an exponential decay of 10 and
50 ps for ethyl and butyl acetamide respectively. These relaxation times correspond
roughly to the longitudinal dielectric relaxation time T of the particular liquid. The

dielectric properties of amides were studied by Bass and Cole [36] and Danhauser and
Johari [37].

Leader and Gormley [38] reported in 1951 of the exceptionally large static
dielectric constant of liquid N-monosubstituted amides. They suggested that the large
dielectric constants of these liquids must be attributed to intermolecular association
into essentially linear chain by CO...HN hydrogen bonds. The degree of association is
usually given in terms of the dipole correlation factor g of Kirkwood. The size of the
amine alkyl group affects the magnitude of the dielectric constant to a greater extent
than the size of the acid alkyl group in isomeric amides [39]. It was also found [39]
that the size and shape of the alklyl substituent of the amine was of secondary
importance to the intermolecular association.

The dielectric relaxation for several amides was measured in the range 0.5-200 MHz
[36-37]. The slow relaxation kinetics for the amides appear to be characteristic of
hydrogen-bonded liquids (alkyl halides liquid relaxation is about 1200 times faster).
Despite the large difference in molecular structure and the extent of intermolecular
association as deduced by the Kirkwood correlation factor, the dielectric relaxation in
alcohols and amides with similar molecular weight parallels both in magnitude and
temperature dependence.

The short time components of the DFWM signals of LDS 750 in ethylacetamide and
butylacetamide solution, are shown in Fig.8, using 20 fs time steps of the probe beam
delay stage. The DFWM signal of both solvents consists of an ultrashort spike followed
by a ~400 fs decay. The initial Gaussian shape spike is caused by a contribution of two
superimposed components. A coherent contribution arises due to repumping of energy from
the pumping beams to the probe beam and is often found in DFWM experiments. The
coherent spike full width half maximum is determined by the laser pulse correlation
function and hence by the laser pulse width. The coherent spike prevents us for the time
being to resolve accurately the first ~150 fs of the solvation dynamics.

The ultrafast solvation dymamics of LDS 750 in acetonitrile was studied by
Rosenthal et al. [4] using time resolved luminescence technique with ~125 fs FWHM
instrument response function. The solvation response consisted of two distinctive
parts. A fast initial decay accounted for ~ 80% of the amplitude was fit by a Gaussian.
The slower tail decayed exponentially with a decay time of 200 fs. In a subsequent
study, Cho et al. [5] measured the time dependent non resonant optical Kerr effect in
neat acetonitrile liquid. Both experiments have shown the biphasic character of the
solvent response. A vibrational mode! was used to describe quantitatively the solvation
and the neat liquid dynamics [5]. A number of Brownian oscillators with frequency
distribution of the vibrational modes produce a very good fit of both experimental data.

The shortest time component has a Gaussian shape but can not be time resolved since
the coherent spike is superimposed on it. Also the pulse duration in our experiment is
longer than the predicted Gaussian component of the solvation. The solvation dynamics on
the short time scale < 2 ps of LDS 750 in ethylacetamide and butylacetamide is quite si-
milar. The relative height of the coherent spike superimposed on the Gaussian component
versus the subsequent total signal is the same in both liquids. The decay time of the
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exponential component is ~400 fs for both liquids, about twice the decay time found in
acetonitrile [4]. We now wish to compare the solvation dynamics on the short time scale
<2ps of LDS 750 in methanol, and diols, previously studied by us [7-8], with the current
measurements of acetamides. On this short time scale the solvation dynamics in methanol,
diols and amide is quite similar. The relative height of the coherent spike
superimposed on the Gaussian compound versus the subsequent total signal is the same in
all liquids. It is interesting to note that while the longer solvation components in
these liquids are strongly dependent on the particular liquid, the ultrafast solvation
dynamics is almost identical (within the S/N ratio of the experimental data).

However the relative amplitude of the ~400 fs component is ~0.4 for methanol and
ethyl acetamide and drastically smaller in the diols (0.2, 0.15 and 0.1 in
1,2-ethanediol, 1,3-propanediol and 1.4-butanediol, respectively) and 0.2 in
butylacetamide.

7.Non-Markovian model of an optically active oscillator for ultrafast solvation dynamics

1. Systematic introduction of the optically active oscillator model: from an overdamped
Brownian oscillator to a non-Markovian oscillator

In this subsection we shall show how to obtain the various models of optically

active oscillators in a systematic way.
According to the previous subsection, the solute-solvent relaxation is determined
by the relaxation function ¢ (t) Let us tun to the central magnitude u = W W < W -

w >(<u> = 0) The magmtude (IJ(t) can be written for our case in the form [34]
<I>r(t) =-- lim J‘ <[u, u(t)}> exp (-et)dt’ 24)

h
e>+0
where u(t) = exp((i/ h)W t) u exp(-(i/ h)W t). If the value u consists of a sum of

partial contributions u = Z u which are not correlated with each other, then the value
¢(t) can be represented m the form ¢ (t)— AJ‘J qu,(t) Here the magnitudes CDrj(t) are
also determined by Eq. (24) where the value u must be substituted by u. The magnitudes
u=W -W_-<W_-W >andu_can serve as examples of different contributions to u.
M M IM M IM s b

In the case of intramolecular transitions, u can be contributions from different

optically active oscillators. For a probe solvation, the longitudinal and transverse
polarizations have different contributions (see below).
It is convenient to introduce a normalized relaxation function for the j-th

contribution:

£ = @ /(0 2%
Let us turn to the study of f (t) Consider its Laplace-transform

T = f exp (-p1) (Dt (26)

Let us cons[ruct an approximation to f:j([)’ which is an asymptotic (long-time)
series expansion (see Appendix A). Such an approach corresponds to the fitting of frj(t)

by two-, three- (and so on) pole formula. We shall write down the fractions obtained by
this approximation for the Laplace-transform of fn'(t) in the foron of continued

fractions. For a two-pole case we have
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™ @ = 1 @7)
P+ -1
P -, 7p,)

where PP~ <,
empirical constant. The Laplace transform T?)(p) coincides with the Laplace transform
of the BO relaxation function [17,20,23,26] for mj =, and yj = -(p1+p2) , where Y,

is the attenuation of the optically active BO. Thus,the model of the optically active BO
can be considered as a two-pole approximation to the relaxation function of the system
under consideration, and its frequency (nj = V-cjl. For very large attenuation y >> @,

1 1

, cjn is determined by formulae (A4) and (AS5) and -(p]+p,) is an

Tn,(p) turns to the form

Tn,(p) =1/ (p+1), (28)
where T = u)?/yi, and corresponds to the Kubo’s stochastic mode] [42].
For a three-pole case we obtain (see Appendix A):

) = 1 S 9)
J p - it
cC -c__/C.
P+ it 32 1
P - (P1+P2+P35
Tﬁ?)(p) coincides with the Laplace transform of the relaxation function of the NMO with
an exponential memory (pj(t) = (pj(O) exp(-ajltl) [17,26] for u)? =< (pj(O) =
€€l and aj =-(p1+p7+p3) is an empirical constant . The function (pj(l) describes
the memory effects in the relaxation process.Thus, the model of an optically active NMO
with an exponential memory function (pj(t) can be considered as a three-pole

approximation to the relaxation function of the system under consideration.

According to the results obtained in this section and Appendix A, the optically
active oscillator model can be considered as the corresponding N-pole approximation to
the relaxation function. The analytical forms of a classical and a quantum relaxation
functions are the same, and they are distinguished only by the formulae for the

coefficients cjn Eqs. (A4) or (AS5)). Thus in the quantum case one does not need to

determine a correct quantum correlation function for an NMO itself which is a rather
complex problem.

2.Applications of the non-Markovian oscillator model with exponential memory.

In this subsection we shall apply the relaxation function of the NMO model with an
exponential dependence of <pi(t), calculated in Appendix A, for the description of
ultrafast solvation dynamics. Let us_introduce the mean relaxation time of the ith
oscillator T, by the formula T, - ) fﬁ(t)dt. It is easy to show that = 'fd(O) =

o

(T)i(O)/(o? = Yi(O)/m?, where 6i(p) is the Laplace transform of the memory function (pj(t),
and v (0) is the frequency dependent attenuation yi(m) for = 0. For an ensemble of

oscillators T =y mT, where m= CDﬁ(O)/Z (bq,(O) is the normalized weight of
i j
oscillator i.
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For the underdamped regime of the NMO model with an exponential dependence of (pi(t)
we obtam (see Appendix A)
a‘+w’
)= { (2a+1)exp (aT) [(1+d) coswT - — (3+d) smwT] 2a exp[ (2a+1)T] }

fn (Ga+1)’+w’
(30)
where a * iw and -(2a+1) are the roots of the denommator in Eq. (A8) for the Laplace

transform T (p) a<0,2a+l1 >0, T=at, d = (4a+1)/(a +w ) One can see from Eq. (30)

that unlike the BO, the NMO has a non-oscillating component even for the underdamped
regime.

Recent experimental [4] and computer simulations [45-46] studies have shown that
the subpicosecond solvation dynamics is characterized by a few components: an ultrafast
Gaussian followed by slower exponentials. Let us apply the NMO model to the description
of the solvation dynamics. The parameters of all NMOs used below correspond to the
underdamped regime ( Eq. (30) ). We shall consider the classical case when the relaxation
function is proportional to the (classical) correlation function. Fig.9 shows expe-
rimental data [4] (circles) of the time-resolved luminescence of LDS 750 in acetonitrile
and their fitting by the model of one (dotted line) and two (solid line) NMOs. One NMO
describes well both the initial (Gaussian) and the long time behavior of the experimen-
tal data, similar to Kubo’s stochastic modulation theory [19] and shows an oscillation
for the intermediate range. The fit by two NMOs with equal normalized weigts (m1=m,=0.5)

gives excellent results. T = 133 fs for one NMO and 1 = 113 fs for two NMOs.
Two NMOs perfectly fit the solvation dynamics simulations for the Stockmayer

l.O‘Eg T T T Y T T T T
o.8H: -
\!

0.6'_1 -
“ 04f 1\ i
0.0 1 1 ] 1 oo ~ O o W D AP
: 0.2 04 0.6 0.8
t,ps

Fig. 9. Normalized relaxation (classical correlation) function of LDS 750 in
acetonitrile: Circles - expenment [4]; dotted line - lfittmg by one NMO
with two parameters: ¢, = 122 cm™ and Y, (0) = 271 cm ', the parameter o =

104 cm’ is determmed from the bandwidth of the initial Gaussian behavxor of
£(1); solid line - fitting by two NMOs: @ = 189 cm™, o = 913 cm’,
Y,(0) = 204 cm’, ®, = 53 cm’, o, =115 cm’, 7,(0) = 104 em’.



139

solvent [45] (Fig. 10; T = 468 fs) and for water [24] (Fig. 115 T = 128 fs). The

Fig. 10.

Fig. 11.
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Normalized correlation function S(t) for the solvation dynamics in Stockmayer
solvent: Circles - simulation data [45]; solid line - ﬁt}ing by two NMOls with
equal normalized weights: 0 = 35 cm’, o = 25 cm, 71(0) =199 cm’,

© =47 cm’, o, =542 cm’!, 72(0) =31 cm™.
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Normalized correlation function S(t) for the solute in water. Circles -
simulation data [24]; solid line - fit by two NMOs: ® = 646 cm’, o = 484

em’} y(0) = 16235 cm’, @, = 596 cm’, @, =790 cm’, Y,0) =
606 cm', m/m =3/
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authors of [24] fit their microscopic semiclassical simulations by six BOs. The last
example illustrates the strength of the NMO model with an exponential "memory” ¢(t). Two
such NMOs simulate the data instead of six BOs. Correspondingly, the number of the
fitting parameters reduces to 7 for the NMO model instead of 17 for the BO model. It can
be understood, since the NMO with an exponential memory corresponds to a higher order
approximation to the real dependence of fr(t), than BO (see above).

Thus, the NMO with exponential attenuation of the memory function is rather
simple, and is an exactly soluble mode] for the optical response. The model of two such
oscillators perfectly fits various experimental and computer simulations data on
ultrafast solvation dynamics.

3. Application to Solvation Dynamics. Elucidation of the Physical Nature.

Let us consider the correlation function for the solvation dynamics process of a
probe molecule in a dipole solvent. The interaction energy between a solute in
electronic state n and the nuclear degrees of freedom of a solvent is given by the
formula

W = - sdr p(r) E”(r) 31)

where p(r) is the nuclear part of the polarization operator of the solvent, E®r) is
the electric field created by the solute molecule in electronic state n.
Let us determine the spatial Fourier transforms of p(r) and E(“)(r):

Py = Jdrexp(kr)p(r), E®k) = rdrexp(ikr)E™(r) (32)
Then we can express V_V“s by py and E®™(k):

v'vns = -2m)°rdk Py E®™(-k) (33)

For isotropic media the latter can be represented as a sum of the longitudinal (L) and
the transverse (T) parts:

W= -n)°rdk [p, E"CK) + p E(K)] (34)

where the longitudinal components p 1k and E!(_")(-k) are parallel to the vector k, and
the transverse ones p_y and E_(r")(-k) are perpendicular to k. Apparently, p , and EI(_“)(-k)
are uncoupled from p, and E_i.")(—k).
For the magnitude u we obtain
_ _ 3
u = W2s - Wls = (2m) j=§ﬂ_ J dk pjkEj12 (-k) (35)

where E (k) = EJF” k) - EJ@(-k). ,

We shall calculate the correlation function Ks(t) = <us(0)us(t)> - <u;> to second
order in the solvent-solute. interaction [19,27]: .
K@) =Tr fus exp (z W D u_exp %-(B + t)Wso)]/ Trexp (W, )  (36)
Using Eqgs. (35) and (36), we obtain that Ks(t) consists of two contributions: Ks(t) =
KsL(t) + KsT(t). The normalized correlation function for the j-th contribution (j = L, T)

is given by the formula

S (1) = K (/K (0) = fdk lEle(k) |2 C(k.)/ Sdk |Em(k) 2 C (k.0) (37)

where
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Ckd) = Tr [p_y P, (Dexp(-BW VTr exp (BW,) (38)
is the longitudinal (j=L) or the transverse (j=T) polarization correlation function, and
_ i i
pjk(t) = exp (H Wsot) pjkexp (- 5 Wsot).
We can express the Laplace transform of Sj(t) by the dielectric function of a
solvent(see Appendix B):
2 R .
oy JaklE w0l [k p) - e 'k, 0)]
S =3 2 [_-1 1
P gaklE (01? [e (ko) - g'(K, 0]

L12

(39)

and
B saklE_ ) 1* [e, &,0) - € (k.p)]

TP paklE._)l? [sT (k0) -e_ (k, )]

T12

(40)

S,

§j(p) = Jexp(-py) S(ndt.
0
Apparently, Sj(t) coincides with the normalized relaxation function frj(t) for the
classical (high temperature) case which we consider. Thus, formulae (39) and (40)
express the Laplace transforms Tﬂ_(p) = S (p) and TIT(p) = §T(p) by the dielectric

function of a solvent.
The fact that there are two contributions to the relaxation (or correlation)

function (the longitudinal (L) and the transverse (T) ones) is the basis for modelling
it by two (or more) different oscillators. It is worth noting, that for dipole solvation
both the L and the T contributes [49). In the case of ion solvation, only the L

contributes [27,49].
Let us consider the long wavelength polarization fluctuation as it is the fastest

mode that contributes to solvation dynamics [50]. In this approximation eL’T(k,p) =
eL,T(O,p) = g(p), since eT(k=O,(0) = eL(k=0,0)) {54], and the Laplace transform §L(p) is
given by the following relation:
€)' (0)
P el - €10
The Laplace transform of the time expansion (A3) can be written in the form [44]:

P

S (p)

L

(41)

1 hny 2n+1

=2 4
f@=p+ Zc /p “2)
which can be considered as the Laurent-series expansion of Trj(p) about p = 0. The

coefficients of this expansion are related to ?U_(p) by the formula:
€= eny!' § p2“ Tn,(p) dp, where the integration is over concentric circle

centered at p = 0.
Using the expression of Td_(p) = §L(p) by the dielectric function of the solvent

(41), we obtain
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g £ -0
¢ =C. = Qmi)” §p = < dp 43)
€7 () - € (0)
Eq. (43) plays an important role in the model of an optically active NMO, since it
relates the parameters of a NMO to an experimentally measurable magnitude: the dielectric
function of a solvent.
In the general case (k # 0), one must know the polarization correlation
function Cj(k,t) for the calculation of Sj(t) (or fq,(t)) Eq. (38)). In principle, we

can represent the Laplace transformation of the normalized function Cj(k,t) /Cj(k,O) in

the continued fraction form similar to the representation of fd(p) in subsection 1 . In
the latter case, the coefficients < (Eq (A4)) depend on k. However, a simple
analytical form of the NMO model is lost for k-dependent coefficients €

In this context the following question arises. Suppose, we use the NMO model with
coefficients ¢ which does not depend on k (for example, with an exponential memory,

i
used in subsection 2). Do the fitting parameters of this NMO have a physical meaning? In
order to answer this question, we shall compare our NMO model with the results of the
molecular hydrodynamic theory (MHT) [48,50] which have been compared [50] with the

computer simulations [45].
The longitudinal correlation function CL(k,t) can be related to the wave vector

dependent longitudinal polarization PY™(kt) calculated in Refs. 48 and 50 (see
APPENDIX C):
Pf‘*”(k,t) C,(k,1)

= (44)
P“L”“T(k,O) C (k.0

i.e., the normalized correlation function CL(k,t)/CL(k,O) is determined by the

normalized  polarization P}:m(k,t)/P]f HT(k,O). For an ion solvation the
Laplace-transformation of P‘;_{m(k,t) is determined by [50]:
BMHT(k p) 2f (k)/2° P kP6*f (k)T
;m =[p 4+ L 1 L0 L 1 ]-1 (45)
PL (k,0) p+ ER(P) p+ E-I(p)

where ER T(p) are the Laplace transformations of the time dependent rotational (R) and
translational (T) friction, correspondingly; ¢ is the solvent molecular diameter; f)l is

the translational parameter which accounts for the ]relative importance of translational
and rotational motions of the solvent; T = (I/kBT) °, I is the moment of inertia of

the solvent molecules. The function fL(k) is given by
fr_(k) = 1-(p0/411:) C(110;k)
where P, is the equilibrium number density of the solvent, C(110;k) is the (110)

component of the spherical expansion of the wave vector and orientation dependent number
density.

Using Egs. (27),(29), (37) and (44)-(45), one can see that in the long wave length
limit (k>0), the right hand side of Eq. (45) has the form of the Laplace transformation
of the relaxation function Tﬁ(p) for an NMO, if
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2 _ 2 _
ZfL(O)/t] = (nj = -c:jl .

The short time behavior of the solvation dynamics is determined by the long wave
length polarization fluctuation [50] and has the following form: ~ exp {- 3

[ZfL(O)/ti]tz}. The magnitudes in this exponent have been calculated [50] for the

12
Stockmayer solvent model [45]. According to these evaluations, [ZfL(O)/ti] = 41.6 cm™.

Let us compare the last value with the fitting parametery of our model 2cogsisting
of two NMOs. Its short time behavior is determined by ~ 1 - 3 (ml(:)1 + mlu)2) '+ .=

exp[- é (mlu)? + mlmz) t2]. Using m=m, = 172, o = 35 cm” and © =47 cm’', we obtain

that (mlmf + mlo);)”2 = 41.4 cm’. Thus, our fitting frequencies o and @_ agree with
the value of the parameter fL(O)/'ti which determines the orientational motion in the

Stockmayer liquid.
Furthermore, Bagchi and Chandra have evaluated [50] the Einstein frequency QO for

the translation motion of the solvent which determines the initial decay of the velocity
correlation function. According to their calculations, Qo = 35.5 cm~ for the system

under consideration [45]). This value is very close to the frequency o = 35 cm™ of one

of the NMOs.
Taking into account the translation motion of the solute jon itself, it is possible
to obtain the following evaluation for the Einstein frequency of the solute [50]:

Q, = QO vm/M™ (46)

where m and M are the masses of the solvent molecule and the solute ion, respectively.
The ratio m/M is equal to 2 for the model used in Ref45. Using this value and the

evaluation Qo =35.5 cm’', we obtain from Eq.(46) va = 50 cm'. The last value is close

to the frequency @, =47 cm’' of the second NMO.

Thus, the fitting frequencies of our model correspond to the frequencies of the
real motions in the solvation model used in Ref.45. There is only one (L) contribution
to the relaxation (correlation) function of model [45] due to the ion character of the
solvation. Using two NMOs in our fitting model, is the payment for the local character
of the model (k=0) and/or the assumption of the exponential memory of a NMO.

There are both the longitudinal and the transverse contributions to the correlation
function in simulations [24] of a probe dipole solvation in water due to the dipole
character of the solvation process. In principle, it can be the justification for
modelling the correlation function by two NMOs. Furthermore, in classical simulations of
water, the rotational librations have a peak around 550-600 cm™ [53]. ’II'he fitting
frequencies of both NMOs (see Fig.11) are close to this value ((1)l = 646 cm "~ and 0 =

596 cm'l).

Thus, according to this discussion, the model, consisting of two NMOs with the
exponential memory, reflects real motions which occur in solvation dynamics of a solute
molecule.

8. Summary
In this work we have developed theoretically and experimentally the principles of a

spectroscopical method based on resonance transient population gratings for a
quantitative description of solvation dynamics of large molecules in liquid solutions.
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We have adduced new experimental data concerning the solvation dynamics of LDS 750 in N
- monosubstituted amides - ethylacetamide and butylacetamide. For a better comparison of
theory and experiment we have included in our model a non-mirror-symmetry absorption and
luminescence spectra of the molecule LDS 750.

We have constructed unified theoretical basis for previous empirical models of an
optically active oscillator. The conception of our approach differs from other
approaches. We consider the relaxation function and construct its asymptotic (long-time)
series expansion that corresponds to the fit of the relaxation function by two-, three-
(and so on) pole formula. As a first approximation we obtain a formula that corresponds
to a classical BO model, as a second approximation - a formula that corresponds to the
classical NMO model with the exponential memory, and so on. In this way, we have
obtained an important conclusion that the optically active oscillator model can be
considered as the corresponding N-pole approximation to the relaxation function.

In our systematic approach, the parameters of a NMO oscillator are not empiric
values and can be calculated. In the long wavelength approximation (k = 0), we have
connected them with an experimentally measurable magnitude: the dielectric function of a
solvent (Eqgs.(27), (29), (43)).

In the general case (k # 0, nonlocal approximation), the parameters of an optically
active NMO are functions of k. However, a simple analytical form for the relaxation
function of a NMO is lost for k-dependent parameters. In order to preseve the simple
analytical dependence, we consider parameters of a NMO oscillator as k-independent. In
this case the NMO model becomes a semiempirical one. Nevertheless, using the simple NMO
model with an exponential attenuation of the memory function for the fit of molecular
dynamics computer simulations of a Stockmayer liquid [45], gives real values for the
frequencies of motions occurring on ultrafast solvation dynamics (see the end of the
section 7.3).

APPENDIX A

In this Appendix we shall construct an approach to flj(t). Suppose that Td(p) has
only simple poles P Then the function fq_(t) can be represented in the form [40]

frj(t) =Zd exp(pt) (AD)
where dm are the residues of the function Trj(p) at p=p_. dm are the coefficients at
(p-pm)'1 in the Laurent-series expansion of ?d(p). The Laplace-transformation ij(p)
can be represented as

T®=2d@p) (A2)

Let us tum to the calculation of the preexponential factors in Eq. (Al) for
frj(l). Using Eqgs. (24)-(25), we shall obtain the power series expansion of frj(t) in t.

Such an expansion will content only even powers of t due to the evenness of <l>rj(t) [34]
(d)q,(t) = d)rj(-t)):w i

_ t
frj(t) =1 +nZlcjn o7

(A3)

where ()] Im <uj(0)u§2"'“(0)>, (Ad)

rj
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d2n~1
dt’.’.n»l uj(t) =0

uJ(_Z“’”(O) =
For high-temperature (classical) case

¢, = (D" <™ O" (0)>/<u’(0)> AS)

where we used the relation <u;2")(0)u;°) 0> = (1)'<u® O™ (©0)>.
)

For the classical case the expansion (A3) with coefficients (AS) coincides with the
cogresponding expansion of the classical correlation function [41] due to the relation
CD:j(t) = B<u)_(0)uj(t)>.

Comparing Eqgs. (Al) and (A3), we obtain that the coefficients < must satisfy to

the relation: ’n
Cjn = ?n: dmp m (AG)
and -
a) E d o 1 b) Xd p'"' =0 (A7)

m m m
Let us construct some approximation to f (t), taking into account successively two
g

(N=2), three (N=3) (and so on) terms in the right hand of Eq. (A2). Such an approach
corresponds to the fitting of f'j(t) by two-, three- (and so on) pole formula.

Apparently, such an approach has a character of the asymptotic (long-time) series
expansion of frj(t) [40].

We shall write down the fractions obtained by such a way, in the form of continued
fractions. Their terms can be calculated by formulae (A6)-(A7), besides the last one,
which will be an empirical constant. For N = 2 we have formula (27) and For N=3 we
obtain formula (29). Formulae (26) and (27) can also be obtained in the framework of a
continued-fraction representation of the time correlation functions, obtained by Mori by
the projection operator formalism [41,43]. Our method is simpler, and therefore we hope
that our derivation will be understandable for a broader audience.

Let us calculate the relaxation function of the NMO with an exponential "memory"
corresponding to three-pole approximation. Passing to dimensionless variables s = p/a, q
= y(O)'cr, and z = at, we obtain from Eq.(29):

T = — -5l ; (A8)
n s+ 7+ (q/z)(1+2 )s+q/z”

e

Here we have omitted the subscript "i" at a, s, g, z, Y(0) and T for brevity. Computing
the inverse Laplace transformation of Eq.(A8), we obtain f”(t).
The character of the relaxation function fd(t) is determined by the roots of the

polynomials in the denominator in the right-hand side of Eq.(A8). Using the properties
of a cubic equation [44] , one can show that this polynomial has one real root and two
conjugated roots, three real roots of which at least two are equal, or three different
real roots, if the quantity Q = (q-q)g-q) is positive, zero, or negative

respectively. Here
2
=X [(z2+202-8) + z'* (2-8)*"?] (A9)

q
12 8(z+1)
Correspondingly for Q > 0 (underdamped regime) we obtain Eq.(30).
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APPENDIX B

In this Appendix we shall express the Laplace transform of Sj(t) by the

dielectric function of a solvent. According to the linear response theory [47,48], for
the classical (high-temperature) case the following relations are held:

47;B Cnoz(k )
e (k w)-1 = ~ J‘dt exp (imt) —ﬂ—— (B1)
dC''(k.t)

I-ET(k,(D) = ﬂ{‘rﬁ_ f dt exp (imt) —T—d—

where € (k w) are the dlelectnc functions, V is the total volume of the system and
Cf°' is the correlation function of the total polarization operator which is the sum of
el

the nuclear conm})unon p and the electronic one p°. If we neglect correlations
between p and p° [27], C;m can be partitioned into a nuclear part C, and the

(B2)

electronic one C: ! By subtracting C: ' from C*, one can relate C. 1o a
j j
corresponding dielectric function

4np 5 N
€ 'k,0) - € k,o0) = .(I)‘dt exp (iwt) —ar (B3)
4np T N
g (k) - & (ko) = ,gdt exp (i0) ——gr—— (B4)

where ej(k,oo) represents the limit of ej(k,u)) for optical frequencies.
One can consider the right hand sides of Egs. (B3) and (B4) as the the

anp  9C (kD)
Laplace transform of functions v : I for the Laplace variable p = -iw. We
obtain:
\ i )
g L6'® D) - 'k <)] = pC kp) -C (k0) (BS)
\
TR [e, (k) - ek, p] = pC (k,p) - C(k0) (B6)

where Cj(k,p) = Jdt exp(-pt) Cj(k,t)
0

and

C,(k.0) = 1%5— [ 'k, ) - &'k, 0)]

CkO = gog- [e, kO - & keo)]

Using Egs. (37), (B5)-(B6), we can express the Laplace transform of Sj(t) by the
dielectric function of a solvent (Eqgs.(39) and (40)).

APPENDIX C
Let us relate the longitudinal correlation function CL(k,t) to the wave vector

dependent longitudinal polarization PY"(k,t). The longitudinal field E”in formula
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(]34) is the electric field that would arise from the solute molecule in electronic state
n>. The nuclear polarization corresponding to the solute transition bletween the ground
and excited states is related to the field difference AE (k,p) = E{ '(k,p) - E{ Jk,p)

by the polarizability tensor tensor o {51]:

B, (k.p) = o (k.p) AE, (k,p) (&)
where . .
o (k.p) = 4n[e;'(k, =) - €'k, p)] (€2)
Using Egs. (C2) and (B5), we can represent PL(k,p) in the form:
2
P kp) = G [c ko) - pCkp)] A (kp) (©3)

According to the Frank-Condon principle, an electronic transition occurs
instantaneously. Therefore, one can consider that the external field is switched on also
instantaneously, so that [51]

AE (k.p) = AE (k)/p (C4)
Inserting (C4) into Eq. (C3), we finally obtain
2 C (k,0)

Pap = @B [T cap] AE®) (c5)
Computing the inverse Laplaceztransfonn of both sides of Eq. (C5), we obtain:

Pk = P (ko) - PP ¢ k) A () (C6)
where ”

P (ko) = B C,(k.0) AE (k) (€7

since CL(k,oo) = 0 according to the properties of correlation functions.
The polarization PL(k,t) (Eq (C6)) is determined in the spirit of the Bom theory

ofsolvation {51,52]: the charge (or the charge distribution) is instantaneously created
at 1=0 on a tagged particle which was in thermal equilibrium with the solvent before the
external field was applied. However, the MHT considers an inverse situation: the decay
of the equilibrium solvation energy after the charge of the solvated ion is turned off
[50]. Therefore, the polarization PL(k,t) is related to the polarization calculated from

the MHT by the expression:
P (k) = P (k=) - P (k) (C8)
Comparing Egs. (C7) and (C8), we obtain Eq.(45).
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