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Abstract

We have studied the capabilities of intense ultrashort chirped pulses for controlling the long-range electron transfer in
systems strongly coupled to a polar medium. Our calculations display a considerable dependence of acceptor electronic

state population on the pulse chirp rate and its sign.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Controlling the electron transfer (ET) with
strong electromagnetic field was the topic of active
research during the last few decades [1-8]. All the
systems discussed in this relation were character-
ized by a large difference of permanent dipole
moments for different electronic states. Interaction
of strong electromagnetic field with such systems
leads to modulation of their energy spectrum by
the field frequency w and may essentially change
the electron transfer rate due to its strong
dependence on the difference in the electronic
state energies. It seems likely that this idea was first
applied to the activation of radiationless transi-

*Corresponding author. Department of Exact Sciences,
Holon Academic Institute of Technology, 52 Golomb St.,
Holon 58102, Israel. Fax: +972-3-502-6576.

E-mail address: fainberg@hait.ac.il (B.D. Fainberg).

tions in large molecules [1-3] in seventies. The
efficiency of the energy spectrum modulation
depends on the value of a parameter z=
ADE /(hw) [1-5,7], where AD = Dy, — Dy; is the
dipole moment difference between initial and final
electronic states, and E is the amplitude of
electromagnetic field. For many complex mole-
cules the electronic excitation is characterized by a
change in the permanent dipole moment reaching
10D. The activated radiationless transitions in
these molecules are quite competitive with the
direct optical transitions [2,3] though for large
organic molecules z <« 1.

For mixed-valence transition metal ET com-
plexes the difference in dipole moments between
donor and acceptor electronic states can be very
large (AD~70 D) [5,7], whereas the off-diagonal
matrix element D;, is much smaller and can be
omitted [4,5]. Due to large AD, parameter z can
exceed 1 for the electric field strengths
E~10°-10" V/em [4,5], which are less than the
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field strengths expected to induce dielectric break-
down in the solvent. The values of z>1 determine
the resonance structure of the tunneling rate [4]
and dramatic variations in the frequency depen-
dence of the absorption cross-section as a function
of laser intensity [5]. In Refs. [7,8] the theoretical
treatment of the problem has been extended to the
crossover between the non-adiabatic and the
adiabatic regimes.

The large electric field strengths needed for z>1
are ecasily obtained in the short pulse regime,
moreover, breakdown threshold increases for
short pulses. An additional point to emphasize is
the large progress in optical control of molecular
dynamics that has been made by using chirped
laser pulses [9-12]. Chirp describes the temporal
variation of the carrier frequency. Intense posi-
tively chirped broadband pulse gives a raise of
fluorescence signal and can completely invert
electronic population distribution of the molecule.
A negatively chirped pulse with frequency decreas-
ing to its tail can create a significant non-
equilibrium population in the ground electronic
state selectively exciting vibrational wave packet
motion.

The aim of the present paper is to elucidate
the question: what can give the use of the
chirped pulses to ET control? Our theory is
not limited by the Golden Rule approximation,
i.e. non-adiabatic reactions. We address it to
long range eclectron transfer systems, reaction
centers and complex molecules. Basic equa-
tions (Sections 2,3) and numerical method
(Section 4) can be applied to the general case of
simultaneous occurring of both the field-induced
radiationless and direct optical transitions in two-
state molecule in a solvent. Such a possibility has
been predicted in Ref. [3]. In this work we
concentrate on the systems with large difference
in permanent dipole moments between the donor
and acceptor states assuming that the direct
optical transition is forbidden. We show that the
external field ET control can be more effective if
one uses chirped pulses. This work can be
considered as extension of the theory [13,14]
related to dynamics of direct chirped pulse
excitation of molecules in solution to the ET
problem.

2. Basic equations

We consider a donor/acceptor system in a
solvent described by zero-order Hamiltonian

2
Hy =Y _|m)[E, + W, (Q)Inl, 8]
n=1

where E, is the energy of state n, W,(Q) is the
Born-Oppenheimer Hamiltonian of reservoir (vi-
brational subsystem of a solute and a solvent),
electronic state |1 ) is denoted as donor, |2) is the
state on the acceptor site. Equations for the
density matrix of the system interacting with a
short phase-modulated pulse

E(1) = E(t)cos[wt — ()] 2)
in the semiclassical dipole approximation can be
written in the form [15,8,13,14]
0 .
530100 = Lupa (000~ i (031~ 2
1
+4 (D2 — Du)E(n)cos(or — w(t))] P (2, )

— LD E(eos(t — p(0) + V]

X (pll((x’ t) - p22((x’ [))’ (38_)

0
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+ % Im{[Dy E(r)cos(wt — (1))

+ VZI]pZI(“s t)}: (3b)
where

Ly = (L + L»)/2,L;

1 0 o’ .
:T_SI‘F(O‘_aIQwst)@J'_O_ZS— j=12

02|’
4)

are operators of diffusion along coordinate o
(generalized coordinate of reservoir that has
dimension of frequency) in the effective parabolic
potentials, 7, is the correlation time, wg is the
Stockes shift of absorption and luminescence
spectra, and oy = wg kg T /h. Diffusion is thought
as a result of stochastic modulation of electronic
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transition under the influence of vibrational
subsystem of the molecule and solvent and
corresponds to the assumption that the dynamics
of the reaction coordinate can be described by an
overdamped oscillator (see details in Refs.
[15,8,14]). Initial condition for Egs. (3) is equili-
brium distribution

pll((xso)

= (2n025) exp (— *
2625

2

>, P =pu =0, (5

s0 24/20 is the full bandwidth of equilibrium
donor state.

Populations of electronic states are obtained by
integration of p;(a, 1) over o:

ni(t) = /pi,-(oc, ) da (6)

In Egs.(3) Dj; are dipole moment matrix
elements, V), is the electron tunneling matrix
element. These equations describe the general case
of simultaneous occurring in both the field-
induced radiationless and direct optical transitions
in two-state molecules in a solvent. They include
electronic coherence effects and allow the con-
sideration of ultrashort chirped pulses of large
intensity.

3. Rotating-wave approximation

Rotating-wave approximation (RWA) has been
used extensively in the study either direct optical
transitions [16] or evolution of a two-level system,
which has permanent dipole moments, interacting
with a pulsed laser [17]. We give here the equations
for the general case. Substitution (pass into
interaction picture)

P12 = piy expli®(1)] (7)
with
D(1) = ky(r) + A—D/t dr'E(1")cos (1),
hJo
Y(1) = ot — @(1), ®)

where k is the order of resonance reduces Egs. (3)
to the form

0 » . 0 -
P Lippsy — 1<w21 —o+ ka—f) %5

i

[D2E(t)cos (1) + Vol

h
x e O(p, — pyy), (%a)
a_;j =Ljp; + (_1)]% Im

x {[D1E(t)cos (1) + Vale 0 plits,
/=h2 (9b)

RWA consists in Fourier development of the
exponent in Eq. (9)

exp{ iiATD /0 ar Eeos o - "’(’/)]}

zexp{ +i ADE(1) sin[w? — @(Z)]}
= exp{ +iz()siny (1]}
= 3 Jl)expl £imp(o)}, (10)

where J,, is the mth order Bessel function, z(7) =
ADE(t)/(hw), and neglecting all the fast oscillating
terms, i.e. those that vary as exp(imwt) with m#0.
The final equations valid near resonances kw =~ wy;
are follows:

0 int ) ) 0 .
% =Lippy) — 1(w21 —o+ ka—"f) 12
1 (DpE(t
- h{ 22O @)+ T2
+ VZle(Z)}(pll = Pn)s (11a)
= = Lipy + (=17

<tmd [P0+ 2]

+ VZle(Z):| plznlt}a ] = 192 (llb)

Unlike Hartmann et al. [8] we study the influence
of a high-frequency external field on the dynamics
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of electron transfer reactions (radiationless
transitions) coupled to an overdamped reaction
coordinate. Therefore the RWA is a good
approach for this case.

4. Numerical solution

Introducing linear combinations of p;:

u=piy + p5y' = 2Repyy,
v=py —py = —2Imp,,,
W= Py = P11,5 = Pn+ P11 (12)

dimensionless variables:
and parameters:

t—>t/ts, x=o0/\/02,

dw
b=14\/0, c= rfka,

d = 1(w2 — kw), e(t) = E([)/Emax’

A o Ts D12 Emax - ADE
max — T; max — ho
2
vy = 2202, (13)

we obtain the system (11) in dimensionless form:
0 .
— I
ot U(X, t) lzu(xa Z)
—[d — c(t = 10) — bxJu(x, 1),
0 R
T v(x, 1) = Lyu(x, 1)
—[d — c(t — ty) — bx]u(x, 1)

+ 1eOJk-1(2) + Jr41(2)]
+ Vodi(2)}  w(x, 1),

%w(x, 1) = Liow(x, 1) — dLs(x, f)

—{e(DOJk-1(2) + Ji1(2)]
+ VoJi(2)}  o(x, 1),

%s(x, 1) = Liss(x, 1) — 0Lw(x, 1), (14)

with a standard shape of the Fokker—Planck
operator L,

~ 62 X0 0
Lo=got (v=3)5+
A X0 O Wt wgih 12
oL =—— = = 1
2ax9 X0 6;52 <kBT> H ( 5)

where x( is dimensionless shift between potential
surfaces.

Solution of Egs. (14) is built up as a basis set
expansion with eigenfunctions of diffusion opera-
tors L2, ¢,(»), which are proportional to Hermite
polynomials:

oC

ue, ) = S 09,0/, y=x-2  (16)

b
n=0 2

This leads to infinite set of coupled ordinary
differential equations for expansion coefficients
i, (1), 0,(2), Wy(2), 5,(¢) which has to be truncated at
a finite number » = N; and then can be integrated
numerically (see details in Ref. [14]).

5. System with frozen nuclear motion, generalized
pulse area

For pulses shorter than ts one can neglect
relaxation (operators L, and 6L in Eq. (14)),
then 0s(x,7)/0tr=0 and the system describes
an ensemble of independent two-level systems
with different transition frequencies, i.e. inhomo-
geneously  broadened electronic  transition.
Undamped Bloch’s equations with the driving
term  {e(D)[Jk-1(2) + Jir1(2)] + VoJi(2)}, can be
integrated independently for each x and after
that averaged over x. This relaxation-free
solution gives useful reference data for separation
of two effects: relaxation and inhomogencous
broadening. Dynamics of a molecule with a
frequency shift x depends on the local value of
detuning d — ¢(t — ty) — bx and on generalized
pulse area

+ o0
A :[ ; {e(O[Jk—1(z(8)) + Jra1(z(0))]
+ VoJi(z(2))} dt an

that reduces to usual definition at AD =0, i.e.
z(t) = 0.

Fig. 1 shows the pulse area (17) for Gaussian
pulse shape as a function of pulse duration and
peak amplitude (Z,x) for the case of one-photon
(k=1) tunnel (D, =0) transition in a polar
molecule (AD = 70D). Through the Bessel func-
tion in Eq.(17) the area dependence on Z.x
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Fig. 1. Pulse area for quantum tunneling in a high-frequency
resonance field (k = 1) as a function of pulse duration and peak
amplitude.

is non-monotone, optimal conditions for the
population transfer take place at definite pulse
amplitudes that correspond to extremes of Bessel
function. One can see that for values of tunneling
electron coupling Vi»~100cm™' the area can
reach n for pulse durations ~100fs at moderate
intensities ~2 x 10° W/cm?.

6. Incoherent regime of population transfer

Relaxation, treated here as a diffusion, leads to
characteristic irreversible dephasing time of elec-
tronic transition 7" = (t,/62)"/> [13]. For the
pulses longer than this time the full description,
Egs. (11) or (14), can be reduced to only two
equations for populations [13,14] and even more—
to one integral equation for partial population
difference if the Green’s function Gy, of Eq. (11a)
for off-diagonal matrix element p,(o, ) can be
approximated as

G, t;0, 1)
~expli(wa — a)(t — )] 6(o — o).

The last condition is fulfilled for the systems
with very broad absorption spectrum and large
relaxation time tg: /02T = (rs\/?f_z;)m >1. In
the case of k-photon resonance kw=w, this
integral ~ equation for  Ax(¢) = [p,,(dGk(2), )—
02 (@r(2), )] with & (f) = wa — k() has the

following form

A(t) = ﬁ%&;exp( O;%gj)
NG Y
X () Ak() dfol, (18)
Ri(t,1) = L
r—=1)

(e, ')
g {eXp (60 - t’))
(1, 7)
+exp<—é(l_ z’))}’ (19)
where (1, 1) = (1) — a(f)e =1/,
(6, 1) = @ (1) — oy — @) — ox)e ),
(1) = 2055(1 — e720/™),

7. Results and discussion

Chirped pulses are commonly obtained from a
short transform-limited (TL) pulse by rearranging
its frequency components using linear optics. It
does not change the spectral width of the pulse.
We consider a Gaussian functional form for the
laser pulse (2) with linear chirp

2
E(t) = Emnax CXP{—(I — IO) }9

272
(t —t1o)°
5
where p is the temporal chirp rate. Duration t
relates to initial TL-pulse duration 7 as follows

v = /1 + (/%2 @1

where fi = ¢"(w) = ¢"(v)/(4n?) is the chirp rate in
frequency domain. If the ratio fi/tj>1 then
T fi/79. Relation between the spectral and tem-
poral chirp rates is fi = ut*/(1 + p*t*). Chirping
stretches a pulse and reduces its peak intensity
|Emax|2 = |E‘Omax|2 TO/T'

As a specific example of electron transfer,
consider a system with a broad-band transition
wgq =2100cm~ ' (spectral width of equilibrium

P(1) = —p (20)
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donor state 21/205, = 1875cm™"), large difference
in dipole moments AD = 70D, D;; =0, and
electron tunneling matrix element V', = 100 cm L
These features are typical for mixed-valence
transition metal complexes in a polar medium.
There have been tested several values of relaxation
time t,="70, 300fs, and 1 ps. We choused a laser
pulse with a spectral full width at half of maximum
(FWHM) Av = 1200cm™', that is comparable
with the transition bandwidth and corresponds
to _initial FWHM pulse duration ¢, =
24/In2 1y = 12.5fs. Intensities of initial pulse
Inax = 10'°—10" W/em? ensured large values of
parameter z > 1 at the pulse stretching from 12.5fs
up to £, =300fs.

Fig. 2 shows the acceptor -eclectronic state
population n, reached to the end of the pulse as
a function of the chirp rate ¢”(v) for one-photon
resonance k=1 at zero detuning of carrier
frequency with respect to the frequency of
Franck-Condon transition. The results for TL
pulses (2a,2b) of the same duration as that of a
chirped pulse with a given ¢”(v) are also presented
for comparison. Solid lines relate to relaxation
time t,=70fs, whereas dotted line are relaxation-
free solutions described in Section 5. Population n,
is approximately proportional to the pulse dura-
tion and amounts to 0.4-0.5 at 7,~300fs or
@"(v) = £5 x 10*fs®>. One can see that for the
chirped pulses (la,1b) the population transfer is

0.6

0.4

n;

0.24

0.0 . .
~5000 -25000 0 25000 50000

¢ (v), fs®

Fig. 2. The acceptor state population n, reached to the end of
the pulse for one-photon resonance and zero detuning (w —
w21)/ws = 0. Solid lines: n as a function of the chirp rate ¢”(v)
for relaxation time 73 = 70 fs (1a), for transform-limited pulses
of the same durations (2a). Dotted lines correspond to
relaxation-free solutions: for chirped pulses (1b) and for TL
pulses (2b).

08
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& 0.4
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0.0 e e ) st
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Fig. 3. The same as in Fig.2 with longer relaxation time
7= 1ps and with x-axis labeled by pulse durations (sign of #,
relates to the chirp sign). Solution for the chirped pulse
excitation of the system with t3=70fs is also shown for
comparison (lc).

provided by the frequency sweeping. Relaxation
has little influence that is apparent from compar-
ison (la) with relaxation-free solution (1b) and
weak dependence n; on the chirp sign. However,
for the pulses of the same duration without chirp
(2a) effective population transfer is possible only
due to relaxation. Relaxation-free solution (2b)
shows a very little population transfer because of
narrow spectrum of the long transform-limited
pulses.

Fig. 3 shows the similar dependences for the
same conditions, except longer relaxation time
7,=1 ps, on the three times wider variation scale of
¢"(v). Chirp rate varies over range + 15 x 10*fs*
that results in pulse stretching up to 850 fs. Curve
(1c) represents again the chirped pulse excitation
for 7, = 70 fs. One can see that the asymmetry of
ny-dependence on chirp sign is more pronounced
for a slowly relaxing system. The population
transfer is more effective in comparison with TL-
pulse excitation at a suitable chirp (2a).

The influence of chirping on n; strongly depends
on the detuning of the pulse carrier frequency w
with respect to Franck—Condon frequency. For
definite detunings the population transfer can be
essentially increased owing to pulse chirping.
It is obvious from Fig. 4 related to a system with
1, = 300 fs under two-photon resonance excitation
(k =2) (when the spectral width of the pulse is
effectively doubled) with detuning (2w —
wy1)/wst = —0.5. Dashed lines (1c¢,2¢) in this figure
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Fig. 4. The final acceptor state population as a function of
chirp rate for two-photon resonance (k = 2) at the amplitude of
initial 12.5-fs-pulse Zp,x = 15 and detuning 2w — wa1)/wg =
—0.5. Total solution for chirped pulses at relaxation time
1s=300fs (la), for TL-pulses of the same durations (2a),
relaxation-free solution for chirped pulses (1b), for TL-pulses
(2b), ““incoherent” solution of integral Eq.(18) for chirped
pulses (1¢), and for TL-pulses (2¢).

represent the results obtained with integral
Eq. (18) of Section 6 which are in a good
agreement with complete solution (1a,2a).

8. Conclusion

In this work we have studied an ultrashort pulse
regime of controlling a long-range electron trans-
fer. We have shown that for the systems with a
moderate relaxation rate the pulse chirping can
increase the efficiency of electron transfer from the
donor to the acceptor state.
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