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Controlling long range electron transfer by intense
ultrashort chirped pulses
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Abstract

We have studied the capabilities of intense ultrashort chirped pulses for controlling the long-range electron transfer in

systems strongly coupled to a polar medium. Our calculations display a considerable dependence of acceptor electronic

state population on the pulse chirp rate and its sign.

r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Controlling the electron transfer (ET) with
strong electromagnetic field was the topic of active
research during the last few decades [1–8]. All the
systems discussed in this relation were character-
ized by a large difference of permanent dipole
moments for different electronic states. Interaction
of strong electromagnetic field with such systems
leads to modulation of their energy spectrum by
the field frequency o and may essentially change
the electron transfer rate due to its strong
dependence on the difference in the electronic
state energies. It seems likely that this idea was first
applied to the activation of radiationless transi-

tions in large molecules [1–3] in seventies. The
efficiency of the energy spectrum modulation
depends on the value of a parameter z ¼
DDE=ð_oÞ [1–5,7], where DD ¼ D22 � D11 is the
dipole moment difference between initial and final
electronic states, and E is the amplitude of
electromagnetic field. For many complex mole-
cules the electronic excitation is characterized by a
change in the permanent dipole moment reaching
10D: The activated radiationless transitions in
these molecules are quite competitive with the
direct optical transitions [2,3] though for large
organic molecules z{1:

For mixed-valence transition metal ET com-
plexes the difference in dipole moments between
donor and acceptor electronic states can be very
large (DDB70 D) [5,7], whereas the off-diagonal
matrix element D12 is much smaller and can be
omitted [4,5]. Due to large DD; parameter z can
exceed 1 for the electric field strengths
EB106�107 V/cm [4,5], which are less than the
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field strengths expected to induce dielectric break-
down in the solvent. The values of zX1 determine
the resonance structure of the tunneling rate [4]
and dramatic variations in the frequency depen-
dence of the absorption cross-section as a function
of laser intensity [5]. In Refs. [7,8] the theoretical
treatment of the problem has been extended to the
crossover between the non-adiabatic and the
adiabatic regimes.

The large electric field strengths needed for zX1
are easily obtained in the short pulse regime,
moreover, breakdown threshold increases for
short pulses. An additional point to emphasize is
the large progress in optical control of molecular
dynamics that has been made by using chirped
laser pulses [9–12]. Chirp describes the temporal
variation of the carrier frequency. Intense posi-
tively chirped broadband pulse gives a raise of
fluorescence signal and can completely invert
electronic population distribution of the molecule.
A negatively chirped pulse with frequency decreas-
ing to its tail can create a significant non-
equilibrium population in the ground electronic
state selectively exciting vibrational wave packet
motion.

The aim of the present paper is to elucidate
the question: what can give the use of the
chirped pulses to ET control? Our theory is
not limited by the Golden Rule approximation,
i.e. non-adiabatic reactions. We address it to
long range electron transfer systems, reaction
centers and complex molecules. Basic equa-
tions (Sections 2,3) and numerical method
(Section 4) can be applied to the general case of
simultaneous occurring of both the field-induced
radiationless and direct optical transitions in two-
state molecule in a solvent. Such a possibility has
been predicted in Ref. [3]. In this work we
concentrate on the systems with large difference
in permanent dipole moments between the donor
and acceptor states assuming that the direct
optical transition is forbidden. We show that the
external field ET control can be more effective if
one uses chirped pulses. This work can be
considered as extension of the theory [13,14]
related to dynamics of direct chirped pulse
excitation of molecules in solution to the ET
problem.

2. Basic equations

We consider a donor/acceptor system in a
solvent described by zero-order Hamiltonian

H0 ¼
X2

n¼1

nj i En þ WnðQÞ½ 	 nh j; ð1Þ

where En is the energy of state n; WnðQÞ is the
Born-Oppenheimer Hamiltonian of reservoir (vi-
brational subsystem of a solute and a solvent),
electronic state |1S is denoted as donor, |2S is the
state on the acceptor site. Equations for the
density matrix of the system interacting with a
short phase-modulated pulse

*EðtÞ ¼ EðtÞcos ot � jðtÞ½ 	 ð2Þ

in the semiclassical dipole approximation can be
written in the form [15,8,13,14]

q
qt

r21ða; tÞ ¼ L12r21 a; tð Þ � i

�
ðo21 � aÞ

þ
1

_
ðD22 � D11ÞEðtÞcosðot � jðtÞÞ

�
r21ða; tÞ

�
i

_
D21EðtÞcosðot � jðtÞÞ þ V21½ 	

� ðr11ða; tÞ � r22ða; tÞÞ; ð3aÞ

q
qt

rjjða; tÞ ¼ Ljjrjjða; tÞ

þ
ð�1Þj

_
Im D21EðtÞcosðot � jðtÞÞ½f

þ V21	r21ða; tÞ
�
; ð3bÞ

where

L12 ¼ ðL11 þ L22Þ=2;Ljj

¼
1

ts
1 þ ða� dj2ostÞ

q
qa

þ s2s
q2

qa2

� �
; j ¼ 1; 2

ð4Þ

are operators of diffusion along coordinate a
(generalized coordinate of reservoir that has
dimension of frequency) in the effective parabolic
potentials, ts is the correlation time, ost is the
Stockes shift of absorption and luminescence
spectra, and s2s ¼ ostkBT=_: Diffusion is thought
as a result of stochastic modulation of electronic
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transition under the influence of vibrational
subsystem of the molecule and solvent and
corresponds to the assumption that the dynamics
of the reaction coordinate can be described by an
overdamped oscillator (see details in Refs.
[15,8,14]). Initial condition for Eqs. (3) is equili-
brium distribution

r11ða; 0Þ

¼ ð2ps2sÞ
�1=2exp �

a2

2s2s

� �
; r21 ¼ r21 ¼ 0; ð5Þ

so 2
ffiffiffiffiffiffiffiffiffi
2s2s

p
is the full bandwidth of equilibrium

donor state.
Populations of electronic states are obtained by

integration of rijða; tÞ over a:

niðtÞ 

Z

riiða; tÞ da ð6Þ

In Eqs. (3) Dij are dipole moment matrix
elements, V12 is the electron tunneling matrix
element. These equations describe the general case
of simultaneous occurring in both the field-
induced radiationless and direct optical transitions
in two-state molecules in a solvent. They include
electronic coherence effects and allow the con-
sideration of ultrashort chirped pulses of large
intensity.

3. Rotating-wave approximation

Rotating-wave approximation (RWA) has been
used extensively in the study either direct optical
transitions [16] or evolution of a two-level system,
which has permanent dipole moments, interacting
with a pulsed laser [17]. We give here the equations
for the general case. Substitution (pass into
interaction picture)

r12 ¼ rint
12 exp iFðtÞ½ 	 ð7Þ

with

F tð Þ ¼ kcðtÞ þ
DD

_

Z t

0

dt0E t0

 �

cos cðt0Þ;

cðtÞ ¼ ot � jðtÞ; ð8Þ

where k is the order of resonance reduces Eqs. (3)
to the form

qrint
21

qt
¼L12rint

21 � i o21 � aþ k
qc
qt

� �
rint

21

�
i

_
D12EðtÞcos cðtÞ þ V21½ 	

� e�iF tð Þðr11 � r22Þ; ð9aÞ

qrjj

qt
¼Ljjrjj þ ð�1Þj

2

_
Im

� D12E tð Þcos cðtÞ þ V21½ 	e�iF tð Þrint
21

� �
;

j ¼ 1; 2 ð9bÞ

RWA consists in Fourier development of the
exponent in Eq. (9)

exp 7i
DD

_

Z t

0

dt0Eðt0Þcos ot0 � jðt0Þ

 �� �

Eexp 7i
DDE tð Þ
_o

sin ot � jðtÞ½ 	
� �


 exp 7izðtÞsin cðtÞ½ 	f g

¼
XN

m¼�N

JmðzðtÞÞexp 7imcðtÞf g; ð10Þ

where Jm is the mth order Bessel function, zðtÞ ¼
DDEðtÞ=ð_oÞ; and neglecting all the fast oscillating
terms, i.e. those that vary as expðimotÞ with ma0:
The final equations valid near resonances koEo21

are follows:

qrint
21

qt
¼L12rint

21 � i o21 � aþ k
qc
qt

� �
rint

21

�
i

_

D12EðtÞ
2

�
Jk�1ðzÞ þ Jkþ1ðzÞ½ 	

þ V21JkðzÞ
�
ðr11 � r22Þ; ð11aÞ

qrjj

qt
¼Ljjrjj þ ð�1Þj

2

_

� Im
D12EðtÞ

2
Jk�1ðzÞ þ Jkþ1ðzÞ½ 	

��

þ V21JkðzÞ
�
rint

21

�
; j ¼ 1; 2: ð11bÞ

Unlike Hartmann et al. [8] we study the influence
of a high-frequency external field on the dynamics
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of electron transfer reactions (radiationless
transitions) coupled to an overdamped reaction
coordinate. Therefore the RWA is a good
approach for this case.

4. Numerical solution

Introducing linear combinations of rij:

u ¼ rint
12 þ rint

21 ¼ 2Rer21;

v ¼ rint
12 � rint

21 ¼ �2Imr21;

w ¼ r22 � r11; s ¼ r22 þ r11; ð12Þ

dimensionless variables: t-t=ts; x ¼ a=
ffiffiffiffiffiffi
s2s

p
;

and parameters:

b ¼ ts

ffiffiffiffiffiffi
s2s

p
; c ¼ t2

s k
do
dt

;

d ¼ tsðo21 � koÞ; eðtÞ ¼ EðtÞ=Emax;

Amax ¼
tsD12Emax

_
; Zmax ¼

DDEmax

_o
;

V0 ¼
2tsV21

_
; ð13Þ

we obtain the system (11) in dimensionless form:

q
qt

uðx; tÞ ¼ #L12uðx; tÞ

� d � cðt � t0Þ � bx½ 	vðx; tÞ;

q
qt

vðx; tÞ ¼ #L12uðx; tÞ

� d � cðt � t0Þ � bx½ 	uðx; tÞ

þ eðtÞ Jk�1ðzÞ þ Jkþ1ðzÞ½ 	f

þ V0JkðzÞg wðx; tÞ;

q
qt

wðx; tÞ ¼ #L12wðx; tÞ � d #Lsðx; tÞ

� eðtÞ Jk�1ðzÞ þ Jkþ1ðzÞ½ 	f

þ V0JkðzÞg vðx; tÞ;

q
qt

sðx; tÞ ¼ #L12sðx; tÞ � d #Lwðx; tÞ; ð14Þ

with a standard shape of the Fokker–Planck
operator #L12

#L12 ¼
q2

qx2
þ x �

x0

2

� � q
qx

þ 1;

d #L ¼
x0

2

q
qx

; x0 ¼
ost

s1=2
2s

¼
ost_

kBT

� �1=2

; ð15Þ

where x0 is dimensionless shift between potential
surfaces.

Solution of Eqs. (14) is built up as a basis set
expansion with eigenfunctions of diffusion opera-
tors L12;fnðyÞ; which are proportional to Hermite
polynomials:

uðx; tÞ ¼
XN
n¼0

*unðtÞfnðy=
ffiffiffi
2

p
Þ; y ¼ x �

x0

2
; ð16Þ

This leads to infinite set of coupled ordinary
differential equations for expansion coefficients
*unðtÞ; *vnðtÞ; *wnðtÞ; *snðtÞ which has to be truncated at
a finite number n ¼ Nf and then can be integrated
numerically (see details in Ref. [14]).

5. System with frozen nuclear motion, generalized

pulse area

For pulses shorter than ts one can neglect
relaxation (operators L12 and dL in Eq. (14)),
then qsðx; tÞ=qt 
 0 and the system describes
an ensemble of independent two-level systems
with different transition frequencies, i.e. inhomo-
geneously broadened electronic transition.
Undamped Bloch’s equations with the driving
term eðtÞ Jk�1ðzÞ þ Jkþ1ðzÞ½ 	 þ V0JkðzÞf g; can be
integrated independently for each x and after
that averaged over x: This relaxation-free
solution gives useful reference data for separation
of two effects: relaxation and inhomogeneous
broadening. Dynamics of a molecule with a
frequency shift x depends on the local value of
detuning d � cðt � t0Þ � bx and on generalized
pulse area

A ¼
Z þN

�N

eðtÞ Jk�1ðzðtÞÞ þ Jkþ1ðzðtÞÞ½ 	f

þ V0JkðzðtÞÞg dt ð17Þ

that reduces to usual definition at DD ¼ 0, i.e.
zðtÞ 
 0.

Fig. 1 shows the pulse area (17) for Gaussian
pulse shape as a function of pulse duration and
peak amplitude (Zmax) for the case of one-photon
(k ¼ 1) tunnel (D12 ¼ 0) transition in a polar
molecule (DD ¼ 70D). Through the Bessel func-
tion in Eq. (17) the area dependence on Zmax
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is non-monotone, optimal conditions for the
population transfer take place at definite pulse
amplitudes that correspond to extremes of Bessel
function. One can see that for values of tunneling
electron coupling V12B100 cm�1 the area can
reach p for pulse durations B100 fs at moderate
intensities B2� 109 W/cm2.

6. Incoherent regime of population transfer

Relaxation, treated here as a diffusion, leads to
characteristic irreversible dephasing time of elec-
tronic transition T 0 ¼ ðts=s2sÞ

1=3 [13]. For the
pulses longer than this time the full description,
Eqs. (11) or (14), can be reduced to only two
equations for populations [13,14] and even more—
to one integral equation for partial population
difference if the Green’s function G12 of Eq. (11a)
for off-diagonal matrix element r12ða; tÞ can be
approximated as

G12ða; t; a0; t0Þ

Eexp iðo21 � aÞðt � t0Þ

 �

dða� a0Þ:

The last condition is fulfilled for the systems
with very broad absorption spectrum and large
relaxation time ts:

ffiffiffiffiffiffi
s2s

p
T 0 ¼ ðts

ffiffiffiffiffiffi
s2s

p
Þ1=3

c1: In
the case of k-photon resonance koEo21 this
integral equation for DkðtÞ 
 r11ð%akðtÞ; tÞ�



r22ð%akðtÞ; tÞ	 with %akðtÞ ¼ o21 � koðtÞ has the

following form

Dk tð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

2ps2s

p exp �
%a2

k tð Þ
2s2s

� �

�
ffiffiffiffiffiffi
4p

p V12j j2

_2

Z t

0

Rkðt; t0ÞJ2
k

� ðzðt0ÞÞDkðt0Þ dt0; ð18Þ

Rkðt; t0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x t � t0ð Þ
p

� exp �
Z2

1 t; t0ð Þ
x t � t0ð Þ

� ��

þ exp �
Z2

2 t; t0ð Þ
x t � t0ð Þ

� ��
; ð19Þ

where Z1ðt; t
0Þ ¼ %akðtÞ � %akðt0Þe�ðt�t0=tsÞ;

Z2ðt; t
0Þ ¼ %akðtÞ � ost � ð%akðt0Þ � ostÞe�ðt�t0=tsÞ;

xðtÞ ¼ 2s2sð1 � e�2ðt=tsÞÞ:

7. Results and discussion

Chirped pulses are commonly obtained from a
short transform-limited (TL) pulse by rearranging
its frequency components using linear optics. It
does not change the spectral width of the pulse.
We consider a Gaussian functional form for the
laser pulse (2) with linear chirp

EðtÞ ¼ Emax exp �
ðt � t0Þ

2

2t2

� �
;

jðtÞ ¼ �m
ðt � t0Þ

2

2
; ð20Þ

where m is the temporal chirp rate. Duration t
relates to initial TL-pulse duration t0 as follows

t ¼ t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð *m=t2

0Þ
2

q
; ð21Þ

where *m ¼ j00ðoÞ ¼ j00ðnÞ=ð4p2Þ is the chirp rate in
frequency domain. If the ratio *m=t2

0 > 1 then
tE *m=t0: Relation between the spectral and tem-
poral chirp rates is *m ¼ mt4=ð1 þ m2t4Þ: Chirping
stretches a pulse and reduces its peak intensity
7Emax72 ¼ 7E0 max72 t0=t.

As a specific example of electron transfer,
consider a system with a broad-band transition
ost =2100 cm�1 (spectral width of equilibrium

Fig. 1. Pulse area for quantum tunneling in a high-frequency

resonance field ðk ¼ 1Þ as a function of pulse duration and peak

amplitude.
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donor state 2
ffiffiffiffiffiffiffiffiffi
2s2s

p
¼ 1875 cm�1), large difference

in dipole moments DD ¼ 70D; D12 ¼ 0; and
electron tunneling matrix element V12 ¼ 100 cm�1.
These features are typical for mixed-valence
transition metal complexes in a polar medium.
There have been tested several values of relaxation
time ts=70, 300 fs, and 1 ps. We choused a laser
pulse with a spectral full width at half of maximum
(FWHM) Dn ¼ 1200 cm�1, that is comparable
with the transition bandwidth and corresponds
to initial FWHM pulse duration tp0 ¼
2

ffiffiffiffiffiffiffiffi
ln 2

p
t0 ¼ 12:5 fs: Intensities of initial pulse

Imax ¼ 101021011 W/cm2 ensured large values of
parameter z > 1 at the pulse stretching from 12.5 fs
up to tp=300 fs.

Fig. 2 shows the acceptor electronic state
population n2 reached to the end of the pulse as
a function of the chirp rate j00ðnÞ for one-photon
resonance k ¼ 1 at zero detuning of carrier
frequency with respect to the frequency of
Franck-Condon transition. The results for TL
pulses (2a,2b) of the same duration as that of a
chirped pulse with a given j00ðnÞ are also presented
for comparison. Solid lines relate to relaxation
time ts=70 fs, whereas dotted line are relaxation-
free solutions described in Section 5. Population n2

is approximately proportional to the pulse dura-
tion and amounts to 0.4–0.5 at tpE300 fs or
j00ðnÞ ¼ 75 � 104 fs2. One can see that for the
chirped pulses (1a,1b) the population transfer is

provided by the frequency sweeping. Relaxation
has little influence that is apparent from compar-
ison (1a) with relaxation-free solution (1b) and
weak dependence n2 on the chirp sign. However,
for the pulses of the same duration without chirp
(2a) effective population transfer is possible only
due to relaxation. Relaxation-free solution (2b)
shows a very little population transfer because of
narrow spectrum of the long transform-limited
pulses.

Fig. 3 shows the similar dependences for the
same conditions, except longer relaxation time
ts=1 ps, on the three times wider variation scale of
j00ðnÞ: Chirp rate varies over range 715� 104 fs2

that results in pulse stretching up to 850 fs. Curve
(1c) represents again the chirped pulse excitation
for ts ¼ 70 fs. One can see that the asymmetry of
n2-dependence on chirp sign is more pronounced
for a slowly relaxing system. The population
transfer is more effective in comparison with TL-
pulse excitation at a suitable chirp (2a).

The influence of chirping on n2 strongly depends
on the detuning of the pulse carrier frequency o
with respect to Franck–Condon frequency. For
definite detunings the population transfer can be
essentially increased owing to pulse chirping.
It is obvious from Fig. 4 related to a system with
ts ¼ 300 fs under two-photon resonance excitation
ðk ¼ 2Þ (when the spectral width of the pulse is
effectively doubled) with detuning ð2o�
o21Þ=ost ¼ �0:5: Dashed lines (1c,2c) in this figure

Fig. 2. The acceptor state population n2 reached to the end of

the pulse for one-photon resonance and zero detuning ðo�
o21Þ=ost ¼ 0: Solid lines: n2 as a function of the chirp rate j00ðnÞ
for relaxation time ts ¼ 70 fs (1a), for transform-limited pulses

of the same durations (2a). Dotted lines correspond to

relaxation-free solutions: for chirped pulses (1b) and for TL

pulses (2b).

Fig. 3. The same as in Fig. 2 with longer relaxation time

ts=1 ps and with x-axis labeled by pulse durations (sign of tp

relates to the chirp sign). Solution for the chirped pulse

excitation of the system with ts=70 fs is also shown for

comparison (1c).
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represent the results obtained with integral
Eq. (18) of Section 6 which are in a good
agreement with complete solution (1a,2a).

8. Conclusion

In this work we have studied an ultrashort pulse
regime of controlling a long-range electron trans-
fer. We have shown that for the systems with a
moderate relaxation rate the pulse chirping can
increase the efficiency of electron transfer from the
donor to the acceptor state.
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