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Chirped pulse excitation in condensed phases involving intramolecular
modes studied by double-sided Feynman diagrams for fast
optical dephasing

B. D. Fainberga) and V. Narbaev
Holon Academic Institute of Technology, Department of Exact Sciences, 52 Golomb Street, Holon 58102,
Israel and Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry,
Tel-Aviv University, Tel-Aviv 69978, Israel

~Received 12 June 2000; accepted 16 August 2000!

The effect of the quantum intramolecular modes on the chirped pulse excitation in condensed phase
has been studied. Nonperturbative equations for the populations of molecular electronic states under
the action of intense chirped pulses have been obtained using the double-sided Feynman diagrams.
We have shown that the application of this technique to systems with fast electronic dephasing
enables us to include strong system–bath interactions~non-Markovian relaxation! and to perform
the summation of diagrams. We have studied the influence of the chirp rate on the integral
population of the excited staten2 after the completion of pulse action. We have shown that the effect
of the quantum intramolecular modes strongly depends on the carrier pulse frequency. Incorporating
these modes increasesn2 when a molecule is excited near the 0→1 transition with respect to the
quantum intramolecular vibration. If the molecule is excited near the 0→0 transition with respect
to the intramolecular mode, the effect is opposite. ©2000 American Institute of Physics.
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I. INTRODUCTION

Recent experiments on optical control have involved
use of chirped pulses.1–16 The phase structure~chirp! of the
pulse determines the temporal ordering of its different f
quency components that enables us to control molec
dynamics.17 In particular, chirped pulses can selectively e
cite coherent wave packet motion either on the ground e
tronic potential-energy surface of a molecule or on the
cited electronic potential surface.8,14 This property of chirped
pulses can be essentially enhanced by going beyond the
turbative regime due to the multiphoton processes of exci
molecules.13

The effects of varying the chirp and intensity of an u
trashort pulse exciting dye molecules in liquid solutions ha
been investigated experimentally by Shanket al.,13 Bardeen,
Wilson et al.,15 and Huppertet al.16 They measured the in
tegrated fluorescence~which is directly proportional to the
integral excited state population! after the completion of the
pulse action, as a function of pulse chirp. In addition, Sha
et al.13 and Huppertet al.16 measured the absorption spe
trum of chirped pulses. For low-power excitation, they fou
that the absorption and amount of excited state popula
were independent of chirp, while for high-power excitati
the authors13,15,16observed a strong chirp dependence.

The interaction of strong radiation~and especially in-
tense chirped pulses! with large molecules in solutions i
rather a complex problem. This problem involves two typ
of nonperturbative interactions: light-matter and relaxat
~non-Markovian! ones.18,19 Therefore, the majority of non
perturbative light-matter descriptions was carried out by

a!Electronic mail: fainberg@barley.cteh.ac.il
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merical solving the corresponding sets of equations for m
lecular systems noncoupled4,13,20,21and coupled22,23 with a
dissipative environment.

In Ref. 24 a nonperturbative analytic approach to t
problem of the interaction of high-power chirped ultrash
pulses with molecular systems has been developed: The
ture of ‘‘moving potentials.’’ We have considered a strong
broadened vibronic system of low-frequency~LF! optically
active ~OA! intra- and intermolecular vibrations$vs% with
dissipation interacting with a strong chirped pulse. Its fie
amplitude can be represented in the form

E~ t !5E~ t !exp~ iw~ t !!, ~1!

where E(t) and w(t) are real functions of time, andw(t)
describes the change of the pulse phase in a timet. The
solution of the problem was based on the following facts

~1! The irreversible dephasing time of the electronic tran
tion T8 for such a system is much shorter than both
vibrational relaxation timets and pulse durationtp ;

~2! the pulse frequencyv(t)5v2dw/dt changes only
slightly duringT8;

~3! relaxation of the vibrational excitation in the ground a
excited electronic states can be described as diffus
with respect to the energetic coordinate.

The approximation of fast electronic dephasing was u
also in a simplified approach to the problem under consid
ation: Time-dependent rate equations, developed by Bard
et al.25

Theory24 naturally leads to the picture of ‘‘moving’’ po-
tentials which are ‘‘photonic replications’’ of the ground an
excited electronic states. An electronic optical transition
3 © 2000 American Institute of Physics
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duced by chirped pulses, can be considered as an ele
transfer reaction between a ‘‘moving photonic replicatio
and the corresponding term occurring at their instantane
intersection. In Ref. 26 the approach24 has been generalize
to different relaxation times in electronic states 1 and 2.

However, the absorption spectrum of large molecules
solutions shows a progression with respect to a hi
frequency~HF! OA vibration ('1000 cm21! ~see inset to
Fig. 9!. Each member of this progression is broadened du
the presence of LFOA intra- and intermolecular vibratio
$vs%. Thus, one can consider an absorption spectrum o
large molecule in solution as consisting from overlapp
vibronic transitions. Our previous considerations24,26 con-
cerned only one vibronic transition. This can be a reasona
approximation to L690 in solution used in experiments
Shanket al.13 since its absorption spectrum shows the m
maximum corresponding to 0→0 transition with respect to a
HFOA vibration, and the remaining have much le
intensities.27 However, the molecule LDS750 used in expe
ments by Shanket al., and many others do not correspond
this model. Therefore, we need to generalize our consi
ation to the presence of a number of vibronic transitions.
intend to study the effect of HF intramolecular modes on
excited-state populationn2 as a function of chirp rate.

A strong analogy exists between optical transitions
strong fields and electron transfer reactions under strong
teraction~solvent-controlled limit!.18,19,24,26,28The influence
of intramolecular vibrational excitations on the solven
controlled electron transfer reactions was investigated
Refs. 29 and 30. It has been shown that the presenc
high-frequency quantum modes gives rise to parallel
bronic channels, each involving a distinct intramolecular
brational excitation of the initial and final states.

A similar effect will be in the case of a molecular syste
interacting with a strong phase modulated pulse where
only difference is that the parallel vibronic channels will
related to a number of intersections of photonic replicatio
and vibronic terms.

However, it is not evident that the solution of the pro
lem will be a direct generalization of our approach.24 The
point is that one must take into account the interference
fects which are similar to the interference of different cha
nels in the electron transfer reactions.31 These effects are o
considerable significance for the ‘‘inverted region’’ accor
ing to Marcus theory of the~free! energy gap (DE) law.32–35

In the photon replica picture,19,24,26,28the frequency detuning
\Dv(t)[\@v(t)2v21

el # ~between instantaneous pulse fr
quency and the frequency of purely electronic transition
→2 v21

el ) plays the role ofDE for the optical transitions in
the field of strong chirped pulses, i.e.,DE(t)5\@v(t)
2v21

el #. Therefore, one can realize all the Marcus regions
one experiment with chirped pulses: the ‘‘normal region
the ‘‘activationless region’’ and the inverted region.

In this work the problem under consideration is solv
using the double-sided Feynman diagrams.36–38 We show
that the application of the double-sided Feynman diagram
systems with fast electronic dephasing opens up new po
bilities for using this technique in resonance nonlinear o
cal spectroscopy. The novel potentials are including str
ron
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system–bath interactions~non-Markovian relaxation! and the
summation of diagrams. The last procedures enable u
obtain nonperturbative equations for the populations of m
lecular electronic states under the action of intense chir
pulses in the presence of hf quantum modes~see Sec. II!.
Some of the preliminary results on the double-sided Fe
man diagrams in the fast electronic dephasing limit, not
cluding the excitation of intramolecular quantum modes,
presented in Conference Proceedings.39 In Sec. II we give a
full account of this study with new results related to t
presence of intramolecular quantum modes.

The remainder of this paper is organized as follows.
Sec. III we use the obtained equations to study the effec
quantum intramolecular modes on the chirped pulse exc
tion of molecules in solutions. In Sec. IV we summarize o
results.

II. DERIVATION OF EQUATIONS FOR POPULATIONS
OF ELECTRONIC STATES UNDER THE ACTION
OF CHIRPED PULSE

Let us consider a molecule with two electronic statesn
51 and 2 in a solvent described by the Hamiltonian

H05 (
n51

2

un&@En1Wn~Q!#^nu, ~2!

whereE2.E1 , En is the energy of staten, Wn(Q) is the
adiabatic Hamiltonian of reservoirR ~the vibrational sub-
systems of a molecule and a solvent interacting with
two-level electron system under consideration in staten).
The molecule is affected by electromagnetic radiation of f
quencyv

E~ t !5 1
2E~ t !exp~2 ivt !1c.c. ~3!

For phase modulated pulses the field amplitudeE(t) can be
presented by Eq.~1!.

Since an absorption spectrum of a large molecule in
lution consists from overlapping vibronic transitions, w
shall single out the contribution from LFOA vibrations$vs%
to Wn(Q): Wn(Q)5WnM1Wns whereWns is the sum of the
Hamiltonian governing the nuclear degrees of freedom of
solvent in the absence of the solute and LFOA intramole
lar vibrations, and the part which describes interactions
tween the solute and the nuclear degrees of freedom of
solvent; WnM is the Hamiltonian representing the nucle
degrees of freedom of the HFOA vibrations of the solu
molecule.

Electromagnetic field~3! induces an optical polarization
in the mediumP(t) which can be expanded in powers
E(t) ~Ref. 40!

P(n)~ t !5NTrR~Dr (n)~ t !!, ~4!

whereN is the density of particles in the system;D is the
dipole moment operator of a solute molecule;r (n) is the
density matrix of the system calculated innth approximation
with respect toE(t). The density matrix satisfies the Liou
ville equation:

i\
]r

]t
5@H01H8~ t !,r#, ~5!
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where H8(t)52DE(t). The quantitiesr (n) can be conve-
niently displayed in the form of double-sided Feynm
diagrams.36,41

Let us consider first double-sided Feynman diagrams
resonance four-photon interaction (n53). The relevant dia-
grams are depicted in Fig. 1. It can be seen from the
grams of Fig. 1 that odd timest1 andt3 determine the evo-
lution of the nondiagonal elements of the density mat
corresponding to an optical electronic transition. The con
bution from the low part of diagram~1! corresponding to the
evolution during the timet1 , is equal to

1

\2E0

`

dt1 exp@2 i ~W2 /\1v21
el !t1#

1

2
DE~ t2t12t22t3!

3exp@2 i ~ t2t12t22t3!v#r11~2`!expS i

\
W1t1D

3 1
2DE* ~ t2t22t3!exp@ i ~ t2t22t3!v#, ~6!

where v21
el 5(E22E1)/\ is the frequency of purely elec

tronic transition 1→2. This contribution amounts to a con
tribution from diagram~1! to a diagonal density matrix
r228

(2)(t2t22t3).

A. Introducing rectangular vertices

Let us consider first the contribution to Eq.~6! from the
LFOA vibrations $vs%. In the case of appreciable Stoke

FIG. 1. Double sided Feynman diagrams for resonance four-photon inte
tion.
r

-

i-

losses when the perturbation of the nuclear system un
electronic excitation 1→2 ~a quantity Vs5W2s2W1s) is
large, one can use a semiclassical~short time!
approximation.42 As noted above, odd timest1 , t3 and so on
determine the evolution of the nondiagonal elements of
density matrix corresponding to an optical electronic tran
tion. When electronic dephasing is fast, these times are v
short and the short time or semiclassical approximation
applicable. Then the term exp@2i(W2s/\1v21

el 2v)t1#
3r11(2`)exp@(i/\)W1st1# in Eq. ~6! can be represented i
the following form:

exp@2 i ~W2s /\1v21
el 2v!t1#r11~2`!expS i

\
W1st1D

'exp@2 i ~Vs /\1v21
el 2v!t1#r11~2`!. ~7!

In addition, the field amplitudesE(t) @see Eq.~1!# will not
depend on odd timest1 and t3 for pump pulses long com
pared with electronic dephasing. As to the phase funct
w(t), we take into account only the linear changes of t
field phase during odd timest2 j 11 which are of the order of
the irreversible dephasing timeT8 ~Ref. 24!

w~ t2t12t22t3!'w~ t2t2!2
dw~ t2t2!

d~ t2t2!
~t11t3!.

~8!

Using Eqs.~6!–~8!, we obtain for the contribution from the
low part of diagram~1!

r228
(2)~ t2t2!

5
1

4\2
uDE~ t2t2!u2E

0

`

dt1

3exp@2 i ~Vs /\1v21
el 2v~ t2t2!!t1#r11~2`!

5
1

4\2
uDE~ t2t2!u2F i

P

v~ t2t2!2v21
el 2Vs /\

1pd~v~ t2t2!2v21
el 2Vs /\!Gr11~2`!, ~9!

wherev(t)5v2dw(t)/dt, P is the symbol for the principa
value. In a similar manner, the contribution from the low p
of diagram~2! can be presented in the form:r229

(2)(t2t2)
5@r228

(2)(t2t2)#* . We can sum the subdiagrams fo
r228

(2)(t2t2) andr229
(2)(t2t2). Using Eq.~9!, we obtain

c-
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r228
(2)~ t2t2!1r229

(2)~ t2t2!

5
1

4\2
uDE~ t2t2!u2

3E
2`

`

dt1 exp@ i ~Vs /\1v21
el 2v~ t2t2!!t1#r11~2`!

5
p

2\2
uDE~ t2t2!u2d~v~ t2t2!2v21

el 2Vs /\!r11~2`!.

~10!

Thus, one can combine the diagrams which differ in dou
lines u2&^1u and u1&^2u only.

The diagrams in pairs~1! and ~2! and ~3! and ~4! differ
in low double linesu2&^1u and u1&^2u. Therefore, diagrams
~1! and~2! can be combined into a single diagram shown
Fig. 2~a!. The subdiagram with the rectangular vertex in th
figure is equal to the sum of two subdiagrams shown in F
2~b!. In a similar manner, diagrams~3! and~4! can be com-
bined into a single diagram displayed in Fig. 3~a! where the
subdiagram with the rectangular vertex represents the su
two subdiagrams shown in Fig. 3~b!. It makes no difference
whether the arrows are to the right or to the left of the s
diagram with the double horizontal line of Fig. 3.

We can generalize this consideration to the case of
calculation of the density matrix in any order with respect
applied field. Introducing rectangular vertices enables u
consider the density matrix diagonal with respect to el
tronic indices only. There exist three types of such verti
shown in Fig. 4. The contributions from thej th vertices of
the a! and b! type in Fig. 4 are equal to

FIG. 2. Sum of double sided Feynman diagrams~1! and~2!. The rectangular
vertex represents the particle creation in the excited electronic state d
photon absorption.
e

.

of

-

e

to
-
s

a!5b!5
p

2\2
uDE~ t2t2m2t2m222•••2t2 j !u2

3d~v~ t2t2m2t2m222•••2t2 j !2v21
el 2Vs /\!.

~11!

The contribution from thej th vertex of the c! type is of
opposite sign: c!52a.

The rectangular vertices correspond to the cont
approximation19,24,33,43 ~an electronic optical transition oc
curs at the intersection of a photonic replication and the c
responding term!.

to

FIG. 3. Sum of double sided Feynman diagrams~3! and~4!. The rectangular
vertex represents the hole creation in the ground electronic state du
photon absorption.

FIG. 4. Three types of rectangular vertices with double horizontal lin
Vertices a! and b! represent the particle creation in the excited electro
state~a! and in the ground electronic state~b! due to photon absorption and
emission, respectively. Vertex c! represents the hole creation in the groun
or excited electronic state due to photon absorption or emission, res
tively.
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The density matrix diagonal with respect to electron
indices can be represented as the sum of the even app
mations with respect to the amplitude of an external field

rnn~ t !5(
j 50

`

rnn
(2 j )~ t !, ~12!

wherernn
(0)(t)5rnn(2`). Equation~12! is displayed graphi-

cally for n51 in Fig. 5. Two thick vertical lines correspon
to the complete density matrix. The number of the diagra
that contribute tornn

(2 j )(t) is equal to 2j 21—the number of
the Liouville space pathways by which one can achieve s
un&^nu beginning fromu1&^1u.

B. Incorporating of optically active intramolecular
vibrational modes

Now let us consider OA intramolecular vibration
modes. Then Eq.~10! can be rewritten in the form

r228
(2)~ t2t2!1r229

(2)~ t2t2!

5
1

4\2
uDE~ t2t2!u2E

2`

`

dt1

3exp@ i ~Vs /\1v21
el 2v~ t2t2!!t1#

3expS i

\
W2Mt1D r11~2`!expS 2

i

\
W1Mt1D . ~13!

Numerous experiments44–50 show that the Franck–
Condon molecular state achieved by an optical excitat
relaxes very fast and the relaxed intramolecular spect
forms within 0.1 ps. Therefore, we shall consider that
intramolecular relaxation related to the OAHF vibratio
takes place in a time shorter than the pump pulse durat
Such a picture corresponds to a rather universal dynam
behavior of large polar chromophores in polar solven
which may be represented by four well-separated ti

FIG. 5. Graphic representation of Eq.~12! for n51. The first row of dia-
grams represents zero, second and fourth-order terms in the perturb
expansion. The second row represents sixth order terms. The secon
higher order terms represent different sequential processes of the pa
and hole creation and their evolution during ‘‘even times’’~includingt8) in
the ground and excited electronic states.
xi-

s

te

n,
m
e

n.
al
,
e

scales:50 An intramolecular vibrational component, and inte
molecular relaxation which consists of an ultrafast~;100
fs!, 1–4 ps, and 10–100 ps decay components. Of cou
some of the LF intramolecular vibrations can relax with t
rate of intermolecular relaxation. We include such vibratio
into the system$vs%.

Thus, we can consider the density matrix averaged w
respect to the intramolecular OAHF vibrations

rns~ t !5TrMrnn~ t !, ~14!

where the total density matrixrnn(t) is factorized

rnn~ t !5rnMrns~ t ! ~15!

and

rnM5exp~2bWnM!/TrM exp~2bWnM!,

is the equilibrium density matrix of the intramolecula
OAHF vibrations. Here TrM denotes the operation of takin
a trace over the variables of the intramolecular OAHF vib
tions,b51/(kBT).

Calculating a trace TrM of both sides of Eq.~13!, we
obtain

r2s8
(2)~ t2t2!1r2s9

(2)~ t2t2!

5
p

2\2
uDE~t2t2!u2

3F1M~v~ t2t2!2v21
el 2Vs /\!r1s~2`!,

where

F1,2M~v8!5
1

2pE2`

`

dt1f a,wM~t1!exp~2 iv8t1!, ~16!

are the ‘‘intramolecular’’ (M ) absorption~1! or lumines-
cence~2! spectra of a solute molecule

f a,wM~t1!5TrM@exp~6~ i /\!W2,1Mt1!

3exp~7~ i /\!W1,2Mt1!r1,2M#, ~17!

FIG. 6. The fourth-order contribution tor2s(t). The left diagram represent
the particle creation in the excited electronic state due to photon absorp
the subsequent particle evolution in state 2 during timet2 , then the hole
creation in this state due to photon emission, and the subsequent hole
lution in the excited electronic state during timet4 . The right diagram
represents the hole creation in the ground electronic state due to ph
absorption, the subsequent hole evolution in state 1 during timet2 , then the
particle creation in the excited electronic state due to photon absorption
the subsequent particle evolution in state 2 during timet4 .

ion
and
cle



w

b

o

he

o

nt

g

:

ing

he

en-

8118 J. Chem. Phys., Vol. 113, No. 18, 8 November 2000 B. D. Fainberg and V. Narbaev
are the characteristic functions~the Fourier transforms! of
the intramolecular absorption (a) or emission (w)
spectrum.42

Generalizing this consideration, we arrive at the follo
ing results for the contributions from thej th vertices of the
a!, b!, and c! type in Fig. 4:

a!5
p

2\2
uDE~ t2t2m2t2m222•••2t2 j !u2

3F1M~v~ t2t2m2t2m222•••2t2 j !2v21
el 2Vs /\!,

~18!

b!5
p

2\2
uDE~ t2t2m2t2m222•••2t2 j !u2

3F2M~v~ t2t2m2t2m222•••2t2 j !2v21
el 2Vs /\!,

~19!

c!52
p

2\2
uDE~ t2t2m2t2m222•••2t2 j !u2

3FnM~v~ t2t2m2t2m222•••2t2 j !2v21
el 2Vs /\!.

~20!

Comparing Eq.~11! with Eqs. ~18!–~20!, one can see
that the first equation can be obtained from the last ones
replacing the intramolecular spectraFnM with d-functions.
In contrast to the case of absence of OAHF modes, the c
tributions from the vertices of the a! and b! type distinct from
each other when these modes are present.

C. Inclusion of damping

Consider the fourth order contribution with respect to t
pump field to the density matrixr2s(t) in the Condon ap-
proximation. This contribution is described by two diagram
shown in Fig. 6

r2s~ t !5r2s
(2←1←1)~ t !1r2s

(2←2←1)~ t !. ~21!

Each term on the right-hand-side of Eq.~21! can be written
as the double convolution of the field factors and the ‘‘ev
lutional’’ part of the density matrixr2s

ev(2←n←1)(t4 ,t2 ,t)
(n51,2) that is determined by the evolution in differe
electronic states

r2s
(2←n←1)~ t !52E

0

`

dt4E
0

`

dt2

p

2\2
uDE~ t2t4!u2

3
p

2\2
uDE~ t2t42t2!u2r2s

ev(2←n←1)~t4 ,t2 ,t !,

~22!

where
-

y

n-

s

-

r2s
ev(2←n←1)~t4 ,t2 ,t !

5exp~2 iL2st4!FnM~v~ t2t4!2v21
el 2Vs /\!

3exp~2 iLnst2!F1M~v~ t2t42t2!2v21
el

2Vs /\!r1s~2`!, ~23!

Lns is the Liouville operator determined by the followin
expression: LnsA5\21@Hns ,A#, and @exp(2iLnst)#klmp

5@exp(2(i/\)Hnst)#km@exp(i/\)Hnst)]pl ; Hns5En1Wns .
We next write Eq.~23! in the coordinate representation

^Qur2s
ev(2←n←1)~t4 ,t2 ,t !uQ8&

5E dQ9E dQ-E dQIVE dQV

3^Quexp~2 iH 2st4 /\!uQ9&FnM~v~ t2t4!2v21
el

2Vs~Q9!/\!^Q9uexp~2 iH nst2 /\!uQ-&

3F1M~v~ t2t42t2!2v21
el 2Vs~Q-!/\!

3^Q-ur1s~2`!uQIV&^QIVuexp~ iH nst2 /\!uQV&

3^QVuexp~ iH 2st4 /\!uQ8&, ~24!

and introduce new coordinates

Q1Q8

2
5q, Q2Q85q8. ~25!

HereQ is a vector coordinate of the LFOA vibrations$vs%.
Let us consider the Wigner representation41,51–53of the

evolutional part of the density matrix and the correspond
operators (A)

r2sW
ev(2←n←1)~q,p;t4 ,t2 ,t !

5
1

~2p\!Nd
E

2`

` K q1
q8

2 Ur2s
ev(2←n←1)~t4 ,t2 ,t !Uq2

q8

2 L
3expS 2

i

\
pq8Ddq8, ~26!

AW~q,p;t !5E
2`

` K q1
q8

2 UA~ t !Uq2
q8

2 L
3expS 2

i

\
pq8Ddq8,

where Nd is the number of the degrees of freedom of t
system$vs%.

We next consider the classical~high-temperature! ap-
proximation. In the high-temperature approximation the d
sity matrix of the ground-stater1s(2`) can be written in the
form ~see Ref. 54!

^Qur1s~2`!uQ8&5expF2
~Q2Q8!2

2\2b
2bU1sS Q1Q8

2 D G
3S E

2`

`

exp@2bU1s~Q!#dQD 21

, ~27!
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whereU1s is the potential energy of the system$vs% in the
electronic state 1.

The Wigner representation of^Qur1s(2`)uQ8& is the
classical density matrix

r1sW~q,p;2`!5S b

2p D Nd/2

expF2
bp2

2
2bU1s~q!G

3S E
2`

`

exp@2bU1s~q!#dqD 21

. ~28!
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It is well-known that an operator depending on t
coordinates alone@like FnM(v(t2t4)2v21

el 2Vs(Q9)/\)]
will retain its form in the Wigner representation. Therefor
we drop the subscriptW near the corresponding operator
In the classical case the Wigner representation
^Quexp(2iH2st4)uQ9&^QVuexp(iH2st4)uQ8& is the Liouville
space Green functionG2c(pqt4 ;p8q8) that obeys the classi
cal Liouville equation. Thus, we obtain fo
r2sW

ev(2←n←1)(q,p;t4 ,t2 ,t):
r2sW
ev(2←n←1)~q,p;t4 ,t2 ,t !

5E dq8E dp8E dq9E dp9G2c~pqt4 ;p8q8!FnM~v~ t2t4!2v21
el 2Vs~q8!/\!Gnc~p8q8t2 ;p9q9!

3F1M~v~ t2t42t2!2v21
el 2Vs~q9!/\!S b

2p D Nd/2

expF2
bp92

2
2bU1s~q9!G S E

2`

`

exp@2bU1s~q!#dqD 21

. ~29!
-
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the
The Liouville space Green functionG2c(pqt4 ;p8q8) in
Eq. ~29! represents the nuclear propagation from the ph
space$p8q8% to $pq% in the electronic state 2. It is conve
niently to use a reduced description, when$pq% represents
only a partial set of coordinates related to optically act
modes$vs% which give a contribution toVs(q). The effect
of the remaining modes can be introduced through a rand
force and friction in the Langevin equation.55 Using standard
techniques, one can then obtain a Fokker–Planck equa
for the Green function in the reduced space.41,53,56–58Classi-
cal low-frequency intramolecular and solvent modes are u
ally overdamped. Since, in this case the momentum rap
approaches its equilibrium value, it needs not be conside
an independent variable. The Liouville space Green func
then satisfies a Fokker–Planck equation in the configura
coordinate space, and we obtain for one-dimensional redu
space

S ]

]t
2LnsDGnc~q,t;q8!50, Gnc~q,0;q8!5d~q2q8!, ~30!

where Lns is the Fokker–Planck operator in the electron
state n. It can be written in the form:Lns5D̃n(]/]q)
3((]/]q)1b(]/]q)Uns(q)) whereD̃n and Uns(q) are the
diffusion coefficient and the potential energy, respectively
electronic staten.

In the case under consideration Eq.~29! may be trans-
formed into the following equation:

r2s
ev(2←n←1)~q,t4 ,t2 ,t !

5E
2`

`

dq8E
2`

`

dq9G2c~q,t4 ;q8!FnM~v~ t2t4!

2v21
el 2Vs~q8!/\)Gnc~q8,t2 ;q9!

3F1M~v~ t2t42t2!2v21
el 2Vs~q9!/\!r1s~q9,2`!,

~31!
e
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n

where

r1s~q9,2`!5S b

2p D 1/2

exp@2bU1s~q9!#

3S E
2`

`

exp@2bU1s~q!#dqD 21

. ~32!

Equations~22! and~31! enable us to write directly an expres
sion for the corresponding diagram of Fig. 6. Such a pro
dure can be easily generalized to the calculation of any
gram.

When OAHF intramolecular vibrations are absent, t
intramolecular spectraFnM in Eq. ~31! convert to
d-functions. Then integrating Eq.~31! with respect toq8 and
q9, we obtain

r22
ev(2←n←1)~q,t4 ,t2 ,t !

5\2(
i , j

uV8@qj~ t2t4!#u21uV8@qi~ t2t42t2!#u21

3G2c~q,t4 ;qj~ t2t4!!Gnc~qj~ t2t4!,t2 ;

qi~ t2t42t2!!r11~qi~ t2t42t2!,2`!, ~33!

where V8(qi)[(dV/dq)uq5qi
and qi , j (t2t8) are the solu-

tions of the equation

v~ t2t8!2v21
el 2V~q!/\50. ~34!

The quantitiesqi(t2t8) are the intersections of the movin
photonic replications with the corresponding terms.24

D. Double-sided Feynman diagrams for fast optical
dephasing

Let us consider the density matrix averaged with resp
to the intramolecular OAHF vibrationsrns(t). It is repre-
sented by two vertical lines. The left line represents
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ket-un& and the right line represents the bra-vector^nu. We
can state the following rules for the double-sided Feynm
diagrams for fast optical dephasing and a Markovian rand
evolution in the configuration coordinate space:

~1! The system evolution depends only on ‘‘even
times. Time increases from bottom to top;

~2! the interactions between system and the pump fie
of frequencyv are presented by three types of the rectan
lar vertices~see Fig. 4!. The vertex of the a! type corre-
sponds to electronic transition 1→2, the vertex of the b!
type—to electronic transition 2→1, and the vertex of the c!
type does not change an electronic state;

~3! interactions with applied pump fields are labeled
the pairs of arrows. The contributions from thej th vertices
of the a!–c! types in Fig. 4 are determined by Eqs.~18!–
~20!, respectively, whereVs[Vs(q). In the absence of in-
tramolecular OAHF vibrations the corresponding contrib
tions are equal to

a!5b!52c!

5
p

2\2
uDE~ t2t2m2t2m222•••2t2 j !u2\

3(
i

uV8@qi~t2t2m2t2m222•••2t2j!#u21, ~35!

whereqi(t2t8) are the solutions of Eq.~34!;
~4! the system evolution between adjacent rectang

vertices j and j 11 along the double vertical line in elec
tronic staten is described by the corresponding Liouvil
space Green functionGnc(qj 11 ,t2 j ;qj ). The evolution of
the system in a last even timet2m is described by the term
Gnc(q,t2m ;qm).

In the absence of intramolecular OAHF vibrations, t
system evolution between adjacent rectangular verticesj and
j 11 along the double vertical line in electronic staten is
described by Gnc(qi 8(t2t2m2•••2t2 j 12),t2 j ;qi(t2t2m

2•••2t2 j )). The evolution of the system in a last even tim
t2m is described by the termGnc(q,t2m ;qi(t2t2m));

~5! the contribution from each diagram torns
(2m)(t) is

obtained by integration with respect to all time
t2 ,t4 , . . . ,t2m and all coordinatesq1 ,q2 , . . . ,qm . The
space integration is eliminated in the absence of the intra
lecular OAHF vibrations.

E. Summation of diagrams

Let us consider the density matrixrnn(t) @see Eq.~12!#.
The same equation can be written also forrns(t) that is
displayed graphically forn51 in Fig. 5.

If we detach from each term of the series of Fig. 5, fro
the second onwards, one rectangle and the line to its u
side, the remaining series, excluding terms resulting in
density matrix of the excited state, is again the compl
density matrixr1s(t). Thus, the latter can be represent
graphically by the diagrams displayed in Fig. 7~a!. Analyti-
cally, this is written
n
m

s
-

-

r

o-

er
e
e

rns~q,t !5rns~q,2`!1~21!n
p

2\2E0

`

dt8uDE~ t2t8!u2

3E
2`

`

dq8Gnc~q,t8;q8!@F1M~v~ t2t8!2v21
el

2Vs~q8!/\!r11~q8,t2t8!2F2M~v~ t2t8!2v21
el

2Vs~q8!/\!r22~q8,t2t8!#, ~36!

for n51. In a similar manner, the complete density mat
r2s(t) can be represented graphically by the diagrams
played in Fig. 7~b!. Analytically, this is written by Eq.~36!
for n52.

If we will denotex5t2t8, then*0
`dt8→*2`

t dx. Let us
assume thatE(x)[0 for 2`,x<0. Then*2`

t dx→*0
t dx,

and we obtain

rns~q,t !5rns
(0)~q!

1~21!n
p

2\2E0

t

dxuDE~x!u2E
2`

`

dq8

3Gnc~q,t2x;q8!@F1M~v~x!2v21
el 2Vs~q8!/\!

3r1s~q8,x!2F2M~v~x!2v21
el

2Vs~q8!/\!r2s~q8,x!#, ~37!

whererns
(0)(q)5rns(q,2`). Equation~37! is a central result

of this work. It generalizes Eq.~15! of Ref. 24 to the case o
the excitation of quantum intramolecular modes. In additi
Eq. ~37! extends the last equation to anharmonic potent
Uns(q) which can be of different shape in electronic state

FIG. 7. Graphic summation of diagrams forr1s(t) ~a! andr2s(t) ~b!. a: the
first diagram on the right-hand-side represents the unperturbated de
matrix; the second one is equal to the sum of all the diagrams resultin
the ground electronic state through the hole creation in state 1~in particular,
the second, third, fifth and seventh diagrams on the right-hand-side o
diagram equation shown in Fig. 5 contribute to this diagram!; the third
diagram on the right-hand-side represents the sum of all the diagram
sulting to the ground electronic state through the particle creation du
photon emission~the fourth, sixth and eighth diagrams on the right-han
side of the diagram equation shown in Fig. 5 contribute to this diagram!. b:
the first diagram on the right-hand-side is equal to the sum of all the
grams resulting to the excited electronic state through the particle crea
due to photon absorption; the second one represents the sum of a
diagrams resulting to the excited electronic state through the hole crea
due to photon emission.
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and 2. The quantitiesF1,2M(v(x)2v21
el 2Vs(q8)/\), appear-

ing in Eq. ~37!, are the intramolecular absorption~1! and
luminescence~2! spectra. They cannot be measured direc
for a molecule which is in a polar solvent. However, t
intramolecular spectraF1,2M can be determined as the spe
tra of the same solute in a nonpolar solvent.59

Integrating the both side of Eq.~37! with respect toq,
we obtain

^r&nn~ t !5dn11~21!n
p

2\2E0

t

dxuDE~x!u2

3E
2`

`

dq8@F1M~v~x!2v21
el 2Vs~q8!/\!

3r1s~q8,x!2F2M~v~x!2v21
el

2Vs~q8!/\!r2s~q8,x!#, ~38!

whered i j is the Kronecker delta,̂r& j j (t)5*r js(q,t)dq is
the normalized population of electronic statej, i.e., ^r& j j (t)
[nj , n11n251. Equation~38! is the generalization of Eq
~20! of Ref. 24 to the case of the excitation of quantu
intramolecular modes.

III. THE EFFECT OF HIGH-FREQUENCY
INTRAMOLECULAR MODES ON CHIRPED PULSE
EXCITATION

Let us assume that the potentialsUns(q) are harmonic:
Uns(q)5En1 1

2ṽ
2(q2dn2d)2. Then Vs(q)5\vst/22qṽ2d,

wherevst5ṽ2d2/\ is the contribution of the OALF vibra-
tions $vs% to the Stokes shift of the equilibrium absorptio
and luminescence spectra. As to quantum intramolec
modes, we will consider one normal intramolecular oscilla
of frequencyv0 whose equilibrium position is shifted unde
electronic transition. Its characteristic functionsf a,wM(t1)
are determined by the following expression:60

f a,wM~t1!5exp~2S0 cothu0!

3 (
k52`

`

I k~S0 /sinhu0!exp@k~u06 iv0t1!#,

~39!

where S0 is the dimensionless parameter of the shift,u0

5\v0 /(2kBT), I n(x) is the modified Bessel function of firs
kind.61 Substituting this expression into Eq.~16! and using
Eq. ~38!, we get

n2~ t !512n1~ t !

5A2ps2sE
0

t

dx (
k52`

`

wk~x!@ r̃11~v211kv0

2v~x!,x!2 r̃22~v212kv02v~x!,x!#, ~40!

where

wk~ t !5exp~2S0 cothu0!I k

3~S0 /sinhu0!exp~ku0!sa~v21!J~ t !, ~41!
y

ar
r

are the probabilities of light-induced transitions ata5v21

6kv02v(x), v215v21
el 1vst/2 is the frequency of Franck–

Condon transition 1→2 with respect to the configuratio
coordinate related to$vs%. Here we introduced a new vari
able a5qdṽ2/\ so that rnn(q,t)dq5 r̃nn(a,t)da. The
quantitysa(v21) in Eq. ~41! is the value of the cross sectio
corresponding to the maximum of the absorption band in
absence of hf intramolecular modes,24 J(t) is the power den-
sity of the exciting radiation,s2s5vst /(\b) is the contribu-
tion of the OALF vibrations$vs% to a second central mo
ment of an absorption spectrum, so th
A2ps2ssa(v21)J(t)5\22(p/2)uDE(t)u2.

To obtain a differential equation for the quanti
r̃ns(a,t), we use Eqs.~16!, ~30!, ~37!, ~39!, ~41!, and differ-
entiate both sides of Eq.~37! with respect tot:

]

]t
r̃ns~a,t !5L̃nsr̃ns~a,t !1~21!nA2ps2s (

k52`

`

wk~ t !

3@d~v211kv02v~ t !2a!r̃1s~a,t !

2d~v212kv02v~ t !2a!r̃2s~a,t !#, ~42!

where

L̃ns5tsn
21F11~a2dn2vst!

]

]~a2dn2vst!

1s2s

]2

]~a2dn2vst!
2G , ~43!

tsn5s2s /D̃n is the correlation time in staten. Below we
assumets15ts2[ts .

Equations~40! and ~42! make it clear that the optica
transitions occur not only ata5v212v(x), but ata5v21

6kv02v(x) also, wherekÞ0. Therefore,r̃ns(a,t) depends
on r̃1s(v211kv02v(t),t) and r̃2s(v212kv02v(t),t) for
different k resulting in the interference of different channe
for optical transitions. It has been known31 that the interfer-
ence effects in the electron transfer reactions are of con
erable significance for the inverted region. However, the r
of these effects increases in importance for optical transiti
under the action of chirped pulses. The point is that, first, o
can realize all the Marcus regions in one experiment w
chirped pulses: the normal region, the activationless reg
and the inverted region. Second, the optical transitions in
model are controlled by diffusion to or from the intersecti
points ~depending on the electronic state under consid
ation!, because the holes~or spikes! in the distribution ap-
pear around the intersection points. The channels will
independent only if the holes~or spikes! do not overlap.
However, the sliding of the intersection of photonic replic
tion and the corresponding term along the term for chirp
pulses24 results in a delocalization of the holes~spikes! that
increases the probability of their overlapping. Therefore,
interference arises between different channels of optical t
sitions which can not be considered separately.

We have solved Eq.~42! numerically assuming that fo
HF intramolecular modes\v0@kBT. Then
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wk~ t !5exp~2S0!
S0

k

k!
sa~v21!J~ t !, ~44!

wherek>0. We used the following initial condition:

r̃nn
(0)~a!5dn1~2ps2s!

21/2exp@2a2/~2s2s!#. ~45!

The normalized populations of electronic states can
calculated using Eq.~40!, or by direct integration ofr̃ns(a,t)
with respect toa

nj~ t !5E r̃ js~a,t !da. ~46!

We are interested in studying the effect of quantum
tramolecular modes on the chirped pulse excitation in c

FIG. 8. Dimensionless nonequilibrium populations of molecular electro

statespn(a,t)[vstr̃ns(a,t) with ~right column! and without~left column!
OAHF intramolecular modes at different time moments (t2t0)/tp

521.3 ~a!, 20.27 ~b!, 0.03 ~c!, 0.33 ~d!, 0.6 ~e!. Other parameters are
(v2v21)/vst50.8, \vst /(2kBT)52.834, Q8[sa(v21)Jmaxtp52.5, ts /tp

52, 2mtp /vst50.8, v0 /vst51, S050.3 ~right column! and 0 ~left col-
umn!. u2k5\(a2vst)

2/(2vst
2 )1kv0 /vst and u1k5\a2/(2vst

2 )
1kv0 /vst1@v(t)2v21

el #/vst are dimensionless potentials corresponding
the excited state 2 (u2k) and the photonic replication 18 of the ground state
(u1k), respectively.k50 and 1 correspond to the vibrationless state and
first vibrationally excited state, respectively, with reference to the HF
tramolecular modev0 . un[un0 .
e

-
-

densed phase. The calculation results, obtained by Eq.~46!
and the numerical solution of Eq.~42! for a Gaussian pulse
of the shape

E~ t ![E~ t !exp~ iw~ t !!5E0 exp@2 1
2~d22 im!~ t2t0!2#,

~47!

are shown in Figs. 8–10. The inset to Figs. 9 and 10~a! show
equilibrium spectra of the absorption and the emission

c

e
-

FIG. 9. The excited-state populationn2 after the completion of the pulse
action as a function of the linear chirp ratem with ~1! and without ~2!
OAHF intramolecular modes. The parameters are: (v2v21)/vst50.5,
\vst /(2kBT)52.834, Q8[sa(v21)Jmaxtp52.5, ts /tp52, v0 /vst51, S0

50.3 ~1! and 0 ~2!. Inset: Equilibrium spectra of the absorption (A) and
the emission (E); the arrow shows the relative position of the carrier fr
quencyv.

FIG. 10. The excited-state populationn2 after the completion of the pulse
action as a function of the phase termF9(n) with ~1! and without~2! OAHF
intramolecular modes~b–d!. The detunings (v2v21)/vst are equal to20.5
(b), 0 (c) and 0.8 (d); other parameters are:\vst /(2kBT)53.38, Q8
[sa(v21)Jmaxtp52.5, ts570 fs,tp0511 fs,v0 /vst51, S050.3 ~1! and 0
~2!. a: Equilibrium spectra of the absorption (A) and the emission (E); the
arrowsb, c andd show the relative positions of the carrier pulse frequen
v for Figs.b–d, respectively.
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model systems. One can see a progression with respect
OAHF vibration. Each member of this progression is broa
ened mainly due to the presence of LFOA vibrations$vs%,
because the OAHF mode is underdamped@see Eq.~39!#.

Figure 8 depicts the nonequilibrium populations of m
lecular electronic states 1 and 2 at different time mome
when a molecule is excited using a positively chirped pu
(m,0). For comparison the left column shows the cor
sponding dependencesr̃ns(a,t) in the absence of the OAHF
intramolecular modes. One can see peculiarities in the qu
tities r̃ns(a,t) @spikes in r̃2s(a,t) and holes inr̃1s(a,t)]
corresponding to the instantaneous intersections betwe
moving photonic replication and the corresponding term,
volving distinct intramolecular vibrational excitations. It
seen that the presence of high-frequency quantum mo
~the right column! gives rise to parallel vibronic channel
which directly influence on the excitation of a molecule.

Let us study the influence of the chirp rate on the in
gral excited state populationn2 after the completion of
pulse action. Experimentally, one measures the integr
fluorescence which is directly proportional ton2 . Figure 9
shows the effect of HF intramolecular modes on the exc
state populationn2 as a function of the linear chirp rat
m(dw/dt5mt). Experimentally, the chirped pulses are o
tained by changing the separation of pulse compression g
ings. Then the parametersd and m are determined by the
formulas13,24

d252$tp0
2 1@2F9~v!/tp0#2%21,

~48!
m524F9~v!@tp0

4 14F92~v!#21,

whereF9(v)5F9(n)/(4p2) is the phase term. Therefore
Fig. 10 showsn2 as a function of the phase term. One c
see from Figs. 9 and 10 that incorporating the intramolecu
modes increasesn2 due to the parallel vibronic channels~see
Fig. 8! when a molecule is excited near the 0→1 transition
with respect to the OAHF vibration@Figs. 9 and 10~d!#. If the
molecule is excited near the 0→0 transition with respect to
the OAHF intramolecular mode, the effect is opposite@Figs.
10~b! and 10~c!#.

These results can be explained by the picture of tw
dimensional potentials corresponding to the OA und
damped HF mode and LF vibrations~see Fig. 11!. If the
pulse frequency corresponds to the 0→1 transition, the first
field interaction excites a molecule to the first excited le
of the intramolecular HF vibration. This intramolecular e
citation relaxes very fast to the vibrationless state of t
vibration ~the HF mode is in equilibrium in the time sca
under consideration!. Therefore, a second field interactio
only can bring more amplitude up, creating population in
excited state, and it cannot bring the amplitude from the fi
field interaction back down to the ground electronic stateS0 .
In contrast, if the pulse frequency corresponds to the 0→0
transition, a second field interaction can bring the amplitu
from the first field interaction back down toS0 , creating a
displaced hole in the ground electronic state. Hence an e
tation in the range of the 0→1 transition creates a nonsta
tionary excited state component, while an excitation in
range of the 0→0 transition discriminates against it.
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Thus, the effect of OAHF intramolecular modes strong
depends on the carrier pulse frequencyv.

IV. CONCLUSION

In this work we have studied the effect of HF intram
lecular modes on the chirped pulse excitation in conden
phase. The problem was solved using the double-sided F
man diagrams.36–38 We have shown that the application o
the double-sided Feynman diagrams to systems with
electronic dephasing opens up new possibilities for using
technique in resonance nonlinear optical spectroscopy.
novel potentials are including strong system–bath inter
tions ~non-Markovian relaxation! and the summation of dia
grams.

We have formulated the diagrammatic technique for f
optical dephasing by the partial summation of definite d
grams and then carried out a total diagram summation.
partial summation of diagrams is carried out by introduci
the rectangular vertices, which are the sums of two sub
grams corresponding to the nondiagonal density matrix
ments in technique.36 Introducing such vertices strongly d
minishes a number of the diagrams under consideration.

In our technique the system evolution depends only
even times~see Sec. II D!. The similar approximation of very
fast dephasing during odd time periods was used by Mu
mel, Yan, and Sparpaglione in their works on electro
transfer rates to sum an infinite series.62,63

Damping in our technique is included as a random p
turbation by a Markovian process in the relevant electro
state. As this takes place, the relaxation itself is not Mark
ian since a system–bath interaction can be strong. A M
kovian nature of a random perturbation enables us to w
easily an expression for the corresponding diagram in
order with respect to the light–matter interaction.

FIG. 11. The picture of two-dimensional potentials.QM is the coordinate of
the OAHF intramolecular vibration.
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Furthermore, only three types of the rectangular verti
exist. This point enables us to make the graphical summa
of diagrams. To our knowledge, it is the first graphical su
mation of double-sided Feynman diagrams in literature. T
last procedures has enabled us to obtain nonperturba
equations for the populations of molecular electronic sta
under the action of intense chirped pulses in the presenc
HF quantum modes.

Using these equations, we have studied the influenc
the chirp rate on the excited-state populationn2 after the
completion of pulse action. We have shown that the effec
the OAHF intramolecular modes strongly depends on
carrier pulse frequency. Incorporating the intramolecu
modes increasesn2 when a molecule is excited near the
→1 transition with respect to the OAHF vibration. If th
molecule is excited near the 0→0 transition with respect to
the OAHF intramolecular mode, the effect is opposite. Th
results are explained by the picture of two-dimensional
tentials corresponding to the OA HF and LF vibrations.

Finally, the absorption spectrum of large molecules
solutions is directly related to the vibrationally nonequili
rium populations in the ground and excited electronic sta
when measured using high-power and comparative stro
chirped pulses.64 These populations can be obtained by t
solution of Eq.~42!. The effect of the OAHF intramolecula
modes on the absorption spectrum of an intense chir
pulse will be studied elsewhere.

ACKNOWLEDGMENTS

All the numerical calculations were performed using t
SSDP-2software package developed by E. Krissinel and
Agmon.65 This work was supported by Ministry of Absorp
tion of Israel.

1B. Amstrupet al., Phys. Rev. A48, 3830~1993!.
2B. Amstrup, G. Szabo, R. A. Sauerbrey, and A. Lorincz, Chem. Phys.188,
87 ~1994!.

3A. Poloviita, K. A. Suominen, and S. Stenholm, J. Phys. B28, 1463
~1995!.

4S. Ruhman and R. Kosloff, J. Opt. Soc. Am. B83, 5013~1990!.
5B. Kohler et al., Phys. Rev. Lett.74, 3360~1995!.
6J. S. Melinger, A. Hariharan, S. R. Gandhy, and W. S. Warren, J. Ch
Phys.95, 2210~1991!.

7J. S. Melingeret al., J. Chem. Phys.101, 6439~1994!.
8C. J. Bardeen, Q. Wang, and C. V. Shank, Phys. Rev. Lett.75, 3410
~1995!.

9E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys. Rev. Lett.68,
514 ~1992!.

10K. Duppen, F. de Haan, E. T. J. Nibbering, and D. A. Wiersma, Ph
Rev. A 47, 5120~1993!.

11M. Sterling, R. Zadoyan, and V. A. Apkarian, J. Chem. Phys.104, 6497
~1996!.

12E. M. Hiller and J. A. Cina, J. Chem. Phys.105, 3419~1996!.
13G. Cerullo, C. J. Bardeen, Q. Wang, and C. V. Shank, Chem. Phys.

262, 362 ~1996!.
14C. J. Bardeen, Q. Wang, and C. V. Shank, J. Phys. Chem. A102, 2759

~1998!.
s
n

-
e
ve
s
of

of

f
e
r

e
-

s,
ly

d

.

.

.

tt.

15A. H. Buist et al., Opt. Lett.24, 244 ~1999!.
16D. Huppert, B. D. Fainberg, and J. Segal,Abstracts of the 6th French–

Israeli Symposium on Nonlinear and Quantum Optics~Les Houches,
2000!, pp. Mo–P14.

17J. L. Krauseet al., J. Chem. Phys.99, 6562~1993!.
18B. D. Fainberg, Opt. Spectrosc.67, 137 ~1989! @Opt. Spektrosk., V.67,

241 ~1989!#.
19B. D. Fainberg, Chem. Phys.148, 33 ~1990!.
20L. Seidner, G. Stock, and W. Domcke, J. Chem. Phys.103, 3998~1995!.
21S. Guerin, Phys. Rev. A56, 1458~1997!.
22Y. Tanimura and S. Mukamel, J. Phys. Soc. Jpn.63, 66 ~1994!.
23D. H. Schirrmeister and V. May, Chem. Phys.220, 1 ~1997!.
24B. D. Fainberg, J. Chem. Phys.109, 4523~1998!.
25C. J. Bardeen, J. Cao, F. L. H. Brown, and K. R. Wilson, Chem. Ph

Lett. 302, 405 ~1999!.
26B. D. Fainberg and V. Narbaev, J. Mol. Liq.86, 201 ~2000!.
27C. J. Bardeen and C. V. Shank, Chem. Phys. Lett.226, 310 ~1994!.
28B. D. Fainberg, inAdvances in Multiphoton Processes and Spectrosco,

edited by S. H. Lin, A. A. Villaeys, and Y. Fujimura~World Scientific,
Singapore, New Jersey, London, in press!.

29A. B. Gelman, Theor. Exp. Chem.19, 256 ~1983! @Teoret. Eksperim.
Khimiya 19, 281 ~1983!#.

30J. Jortner and M. Bixon, J. Chem. Phys.88, 167 ~1988!.
31A. I. Burshtein, P. A. Frantsuzov, and A. A. Zharikov, J. Chem. Phys.96,

4261 ~1992!.
32R. A. Marcus, J. Chem. Phys.24, 966 ~1956!.
33L. D. Zusman, Chem. Phys.49, 295 ~1980!.
34J. T. Hynes, J. Phys. Chem.90, 3701~1986!.
35I. Rips and J. Jortner, J. Chem. Phys.87, 6513~1987!.
36T. K. Yee and T. K. Gustafson, Phys. Rev. A18, 1597~1978!.
37M. Aihara, Phys. Rev. A18, 606 ~1978!.
38J. P. Uyemura, IEEE J. Quantum Electron.QE-16, 472 ~1980!.
39B. D. Fainberg, J. Chin. Chem. Soc.47, 579 ~2000!.
40Y. R. Shen,The Principles of Nonlinear Optics~Wiley, New York, 1984!.
41S. Mukamel,Principles of Nonlinear Optical Spectroscopy~Oxford Uni-

versity Press, New York, 1995!.
42M. Lax, J. Chem. Phys.20, 1752~1952!.
43B. I. Yakobson and A. I. Burshtein, Chem. Phys.49, 385 ~1980!.
44W. Jarzebaet al., J. Phys. Chem.92, 7039~1988!.
45V. L. Bogdanov and V. P. Klochkov, Opt. Spectrosc.44, 412 ~1978!.
46V. L. Bogdanov and V. P. Klochkov, Opt. Spectrosc.45, 51 ~1978!.
47V. L. Bogdanov and V. P. Klochkov, Opt. Spectrosc.52, 41 ~1982!.
48S. Y. Goldberget al., Chem. Phys.183, 217 ~1994!.
49M. L. Horng, J. Gardecki, A. Papazyan, and M. Maroncelli, J. Ph

Chem.99, 17311~1995!.
50T. Jooet al., J. Chem. Phys.104, 6089~1996!.
51E. Wigner, Phys. Rev.40, 749 ~1932!.
52M. Hillery, R. F. O’Connel, M. O. Scully, and E. P. Wigner, Phys. Re

106, 121 ~1984!.
53D. Y. Yang and S. Y. Sheu, J. Chem. Phys.106, 9427~1997!.
54R. Kubo and Y. Toyozawa, Prog. Theor. Phys.13, 160 ~1955!.
55H. Mori, Prog. Theor. Phys.34, 399 ~1965!.
56J. M. Deutch and I. Oppenheim, J. Chem. Phys.54, 3547~1971!.
57A. O. Caldeira and A. J. Leggett, Physica A121, 587 ~1983!.
58Y. J. Yan and S. Mukamel, J. Chem. Phys.89, 5160~1988!.
59R. S. Fee and M. Maroncelli, Chem. Phys.183, 235 ~1994!.
60S. H. Lin, Theor. Chim. Acta10, 301 ~1968!.
61M. Abramowitz and I. Stegun,Handbook on Mathematical Function

~Dover, New York, 1964!.
62M. Sparpaglione and S. Mukamel, J. Chem. Phys.88, 3263~1988!.
63S. Mukamel and Y. J. Yan, Acc. Chem. Res.22, 301 ~1989!.
64B. D. Fainberg, Chem. Phys. Lett.~to be published!.
65E. B. Krissinel and N. Agmon, J. Comput. Chem.17, 1085~1996!.


