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Chirped pulse excitation in condensed phases involving intramolecular
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The effect of the quantum intramolecular modes on the chirped pulse excitation in condensed phase
has been studied. Nonperturbative equations for the populations of molecular electronic states under
the action of intense chirped pulses have been obtained using the double-sided Feynman diagrams.
We have shown that the application of this technique to systems with fast electronic dephasing
enables us to include strong system—bath interactioas-Markovian relaxationand to perform

the summation of diagrams. We have studied the influence of the chirp rate on the integral
population of the excited state after the completion of pulse action. We have shown that the effect

of the quantum intramolecular modes strongly depends on the carrier pulse frequency. Incorporating
these modes increasag when a molecule is excited near the-@ transition with respect to the
quantum intramolecular vibration. If the molecule is excited near theDQtransition with respect

to the intramolecular mode, the effect is opposite. 2@00 American Institute of Physics.
[S0021-960600)52142-4

I. INTRODUCTION merical solving the corresponding sets of equations for mo-

,20,21 23 \p i
Recent experiments on optical control have involved théecular systems noncoupfetf and coupledf** with a

. - ; dissipative environment.
use of chirped puls€s!® The phase structurehirp) of the . .
pulse determines the temporal ordering of its different fre- In Ref. 24 a nonperiurbative analytic approach to the

guency components that enables us to control molecular?rObIem _Of the interaction of high-power chirped uItrashorF
dynamicst In particular, chirped pulses can selectively ex- pulses with molecular systems has been developed: The pic-

cite coherent wave packet motion either on the ground ele fure of “moving potentials.” We have considered a strongly

tronic potential-energy surface of a molecule or on the exc_broadened vibronic system of low-frequeniy) optically

cited electronic potential surfaéé? This property of chirped active (OA) intra- and intermolecular vibrationgng} with
pulses can be essentially enhanced by going beyond the p§L35|pat|on interacting with a strong chirped pulse. Its field

turbative regime due to the multiphoton processes of excitingmnp“tUde can be represented in the form
molecules. . S E(t)= E(Dexplig(t)), ®
The effects of varying the chirp and intensity of an ul-
trashort pulse exciting dye molecules in liquid solutions havewvhere £(t) and ¢(t) are real functions of time, ang(t)
been investigated experimentally by Shagilal,'* Bardeen, describes the change of the pulse phase in a tiniEhe
Wilson et al,® and Huppertet all® They measured the in- solution of the problem was based on the following facts:
tegrated fluorescendavhich is directly proportional to the
integral excited state populatipafter the completion of the
pulse action, as a function of pulse chirp. In addition, Shank
et al!® and Huppertet al'® measured the absorption spec-
trum of chirped pulses. For low-power excitation, they found
that the absorption and amount of excited state populatio
were independent of chirp, while for high-power excitation
the authors*>*observed a strong chirp dependence.
The interaction of strong radiatiotand especially in-

tense chirped pulsgswith large molecules in solutions is The approximation of fast electronic dephasing was used
rather a complex problem. This problem involves two typesysq in a simplified approach to the problem under consider-

of nonperturbative interactions: light-matter and relaxationgjqp,. Time-dependent rate equations, developed by Bardeen
(non-Markovian ones:**® Therefore, the majority of non- 4 525 ’

perturbative light-matter descriptions was carried out by nu- Theon?* naturally leads to the picture of “moving” po-

tentials which are “photonic replications” of the ground and
¥Electronic mail: fainberg@barley.cteh.ac.il excited electronic states. An electronic optical transition in-

(1) The irreversible dephasing time of the electronic transi-

tion T’ for such a system is much shorter than both the

vibrational relaxation timers and pulse duratiofy, ;

(2) the pulse frequencyw(t)=w—de/dt changes only
slightly duringT’;

?3) relaxation of the vibrational excitation in the ground and
excited electronic states can be described as diffusion
with respect to the energetic coordinate.
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duced by chirped pulses, can be considered as an electregstem—bath interactioieon-Markovian relaxationand the
transfer reaction between a “moving photonic replication” summation of diagrams. The last procedures enable us to
and the corresponding term occurring at their instantaneousbtain nonperturbative equations for the populations of mo-
intersection. In Ref. 26 the appro&tihas been generalized lecular electronic states under the action of intense chirped
to different relaxation times in electronic states 1 and 2.  pulses in the presence of hf quantum modese Sec. )

However, the absorption spectrum of large molecules ifSome of the preliminary results on the double-sided Feyn-
solutions shows a progression with respect to a highman diagrams in the fast electronic dephasing limit, not in-
frequency(HF) OA vibration (=1000 cm}) (see inset to cluding the excitation of intramolecular quantum modes, are
Fig. 9). Each member of this progression is broadened due tpresented in Conference Proceedifigi Sec. Il we give a
the presence of LFOA intra- and intermolecular vibrationsfull account of this study with new results related to the
{wg}. Thus, one can consider an absorption spectrum of gresence of intramolecular quantum modes.
large molecule in solution as consisting from overlapping  The remainder of this paper is organized as follows. In
vibronic transitions. Our previous consideratiti®® con-  Sec. Ill we use the obtained equations to study the effect of
cerned only one vibronic transition. This can be a reasonablguantum intramolecular modes on the chirped pulse excita-
approximation to L690 in solution used in experiments bytion of molecules in solutions. In Sec. IV we summarize our
Shanket al!® since its absorption spectrum shows the mainresults.
maximum corresponding to-8 0 transition with respect to a
HFOA vibration, and the remaining have much lessll. DERIVATION OF EQUATIONS FOR POPULATIONS
intensities?’ However, the molecule LDS750 used in experi- OF ELECTRONIC STATES UNDER THE ACTION
ments by Shankt al, and many others do not correspond to OF CHIRPED PULSE
this model. Therefore, we need to generalize our consider- | ¢t ys consider a molecule with two electronic states
f';\tlon to the presence of a numb.er of vibronic transitions. We_ 1 and 2 in a solvent described by the Hamiltonian
intend to study the effect of HF intramolecular modes on the
excited-state population, as a function of chirp rate.

A strong analogy exists between optical transitions in Hoznzl [MIEn+Wn(QKn, 2
strong fields and electron transfer reactions under strong in- _ )
teraction (solvent-controlled limit1819242628The influence WhereEx>E;, E, is the energy of stata, W,(Q) is the
of intramolecular vibrational excitations on the solvent-2diabatic Hamiltonian of reservoR (the vibrational sub-

controlled electron transfer reactions was investigated irfYStems of a molecule and a solvent interacting with the

Refs. 29 and 30. It has been shown that the presence do-level electron system under consideration in stae

high-frequency quantum modes gives rise to parallel vi-The molecule is affected by electromagnetic radiation of fre-
bronic channels, each involving a distinct intramolecular vi-duencye

brational excitation of the initial and final states. E(t)=3E(t)exp —iwt)+c.C. (3

_ AS|_m|Iar _effect will be in the case of a molecular system For phase modulated pulses the field amplitde) can be
interacting with a strong phase modulated pulse where theresented by Eq(1)
only difference is that the parallel vibronic channels will be P y '

. ) . o Since an absorption spectrum of a large molecule in so-

related to a number of intersections of photonic repI|cat|on§ . . : . . "
) : ution consists from overlapping vibronic transitions, we

and vibronic terms.

o . . shall single out the contribution from LFOA vibratiofi®}
quever, it is not ewden} th.at the solution of the prob- 10 Wo(Q): W, (Q) =W,y + W, whereW, . is the sum of the
lem will be a direct generalization of our appro&éhThe e )
Hamiltonian governing the nuclear degrees of freedom of the

point is that one must take into account the interference ef- . X
. . . . solvent in the absence of the solute and LFOA intramolecu-
fects which are similar to the interference of different chan-

nels in the electron transfer reactioiisThese effects are of lar vibrations, and the part which describes interactions be-
. L o tween the solute and the nuclear degrees of freedom of the
considerable significance for the “inverted region” accord-

. ao-35  solvent; W,y is the Hamiltonian representing the nuclear
Ing to Marcus theqry of th(afrezez Z%r;ergy gap 4 E) law. . degrees of freedom of the HFOA vibrations of the solute
In the photon replica pictur¥;?*262%he frequency detuning

. molecule.

hAw(t)=A[w(t) ~05] (between instantaneous pulse fre- g0 4o magnetic field3) induces an optical polarization
qguency and the frequency of purely electronic transition 1in the mediumP(t) which can be expanded in powers of
—2 wg'l) plays the role ofAE for the optical transitions in E(t) (Ref. 40
the field of strong chirped pulses, i.eAE(t)=%[w(t) '
— wS]. Therefore, one can realize all the Marcus regions in ~ P™(t)=NTrg(Dp("(t)), 4
one experiment with chirped pulses: the “normal region,” \yhere N is the density of particles in the syste;is the
the “activationless region” and the inverted region. dipole moment operator of a solute molecué? is the

_In this work the problem under gon3|d?r§t|on is solvedyensity matrix of the system calculatedrith approximation
using the double-sided Feynman diagrafhs® we Show  ith respect toE(t). The density matrix satisfies the Liou-
that the application of the double-sided Feynman diagrams tgjje equation:

systems with fast electronic dephasing opens up new possi-
bilities for using this technique in resonance nonlinear opti-
cal spectroscopy. The novel potentials are including strong

2

., dp ,
i —==[Ho+H"(1).p], 5
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losses when the perturbation of the nuclear system under
electronic excitation 2 (a quantity Vo=Wy— W) is
large, one can use a semiclassicdshort time
approximatior”? As noted above, odd times, 73 and so on
determine the evolution of the nondiagonal elements of the
density matrix corresponding to an optical electronic transi-
tion. When electronic dephasing is fast, these times are very
short and the short time or semiclassical approximation is
applicable. Then the term expi(Whs/fi+wh— w) 7]

X pq1(—0)exd (i/h)Wisr] in Eq. (6) can be represented in
the following form:

) i
exd —i(Ways/fi+ wgll_ o) T1]p11(— w)exﬁ{%wlsTl)

~exf —i(Vs/h+ 05— ) 71]p1a( — ). @

In addition, the field amplitude§(t) [see Eq.(1)] will not
depend on odd times, and 53 for pump pulses long com-
pared with electronic dephasing. As to the phase function
¢o(t), we take into account only the linear changes of the
field phase during odd times; . ; which are of the order of
the irreversible dephasing timE (Ref. 29

FIG. 1. Double sided Feynman diagrams for resonance four-photon interac-

tion.

whereH’ (t)= —DE(t). The quantitiesp(™ can be conve-
niently displayed in the form of double-sided Feynman

diagrams4

Let us consider first double-sided Feynman diagrams fo
resonance four-photon interaction=3). The relevant dia-
grams are depicted in Fig. 1. It can be seen from the dia-
grams of Fig. 1 that odd times, and r; determine the evo-

de(t—15)

p(t—m— 7= T3)~e(t—7)— at= )(Tl 73).

()

[Jsing Eqgs.(6)—(8), we obtain for the contribution from the
low part of diagram(1)

lution of the nondiagonal elements of the density matrix

corresponding to an optical electronic transition. The contri2z " (t—
bution from the low part of diagrartl) corresponding to the

evolution during the timer;, is equal to

hZ

1
dTl eXF[—I(Wzlﬁ-I-w )Tl]EDE(t_ T —

T2_

73)

xXexg —i(t—7y— 7~ Ts)w]Pll(—w)eXF(;i—WlTl)

X 3DE* (t— 7,— ry)exfi (t— 7, — m3) w],

where oS = (E,—

pps(t— 71— 73).

A. Introducing rectangular vertices

Let us consider first the contribution to E&) from the

(6)

E,)/% is the frequency of purely elec-
tronic transition 2. This contribution amounts to a con-
tribution from diagram(1) to a diagonal density matrix

72)

1 > [
:Eng(t_TZH fo dTl

Xexf —i(Vs/h+ w$— o(t— 7)) 71]p1a( —)

1 , P
—|D5(t—7-2)|2 i
+ 78 w(t—15) — 03— Vslh) | pra( — =), 9

wherew(t) = w—de(t)/dt, P is the symbol for the principal
value. In a similar manner, the contribution from the low part
of diagram(2) can be presented in the formis?)(t— )
—[pz(z)(t—Tz)]* We can sum the subdiagrams for

LFOA vibrations {w¢}. In the case of appreciable Stokes p,$?)(t—1,) andp4?)(t— 7,). Using Eq.(9), we obtain
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FIG. 2. Sum of double sided Feynman diagrathsand(2). The rectangular I |1> < 1' |1> < ll
vertex represents the particle creation in the excited electronic state due t
photon absorption.
b)
pé(zz)(t— o)+ p’z'gz)(t —15) FIG. 3. Sum of double sided Feynman diagra@)sand(4). The rectangular

vertex represents the hole creation in the ground electronic state due to
photon absorption.

1 2
=E|D5(t—72)|

. . ™
X J>7‘ dTl eXF[|(VS/h+ wgll_ L()(t_ 7'2))7'1]911(_00) a):b): %|Dg(t_ Tom™ Tom—2— """ — T2j)|2

X S(W(t= Tom= Tom- o~ = 75) — w5y~ Vi /).
(11
(10)  The contribution from thejth vertex of the ¢ type is of

Thus, one can combine the diagrams which differ in double®PPOSite sign: o=—a. _
lines |2)(1| and|1)(2| only. The rectangular vertices correspond to the contact

The diagrams in pairél) and(2) and (3) and (4) differ approximatioh®?*3343(an electronic optical transition oc-
in low double lines|2)(1| and|1)(2|. Therefore, diagrams curs at the intersection of a photonic replication and the cor-
(1) and (2) can be combined into a single diagram shown inf€sPonding term
Fig. 2(a). The subdiagram with the rectangular vertex in this
figure is equal to the sum of two subdiagrams shown in Fig.

av
= palDet- 72)[28(w(t— m5) — w3~ Vs/h) pra( — ).

2(b). In a similar manner, diagran{8) and(4) can be com- 11>, <1 ®
bined into a single diagram displayed in FigaBwhere the |2.> < ®||®
subdiagram with the rectangular vertex represents the sum o @
two subdiagrams shown in Fig(l8. It makes no difference ®
whether the arrows are to the right or to the left of the sub- 11> <1 2> <2
diagram with the double horizontal line of Fig. 3.

We can generalize this consideration to the case of the a) b) )

calculation of the density matrix in any order with respect to
applied field. Introducing rectangular vertices enables us t®IG. 4. Three types of rectangular vertices with double horizontal lines.
consider the density matrix diagonal with respect to elecVertices a a_nd b represent the pe}rticle creation in the excited _electronic
tronic indices only. There exist three types of such verticeS2te(@ and in the ground electronic stay due to photon absorption and

. . . . . . emission, respectively. Vertex cepresents the hole creation in the ground
shown in Fig. 4. The contributions from théh vertices of o excited electronic state due to photon absorption or emission, respec-

the g and b type in Fig. 4 are equal to tively.
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scales®® An intramolecular vibrational component, and inter-
r > <y 1> o< <) molecular relaxation which consists of an ultrafést100
fs), 1-4 ps, and 10-100 ps decay components. Of course,
= * * some of the LF intramolecular vibrations can relax with the
rate of intermolecular relaxation. We include such vibrations
into the systen{w}.

+ +
] <1 p=||<2l

>k kot

> <y 11> < Thus, we can consider the density matrix averaged with
> < > < 1> <1 1> <y respect to the intramolecular OAHF vibrations
+ + + + e Pns(t) =Trupnn(t), (14)
L 2> <2 W< e | where the total density matrix, () is factorized
=] |<2| 2] {<2] L < [ < Pnn(t) = pampns(t) (15
and
> < 11> < n> < 11> <1

Pam=EXP(— BWom)/ Ty expl— BWqy),
FIG. 5. Graphic representation of E4.2) for n=1. The first row of dia- o ) ) )
grams represents zero, second and fourth-order terms in the perturbatid® the equilibrium density matrix of the intramolecular
expansion. The second row represents sixth order terms. The second a@AHF vibrations. Here Ty denotes the operation of taking

higher order terms represent different sequential processes of the particg trace over the variables of the intramolecular OAHF vibra-
and hole creation and their evolution during “even timdgicluding 7’) in

the ground and excited electronic states. tions, 8= l/('kBT)- '
Calculating a trace Jy of both sides of Eq(13), we
obtain

The density matrix diagonal with respect to electronic ,, (2
- O(t— 1)+ p5sPt— 1)
indices can be represented as the sum of the even approflzs 2 2s 2
mations with respect to the amplitude of an external field -
= = %|D5(t—72)|2
pnn(t)zgo Pﬁznj)(t), (12
wherepfﬁ, (t) =pnn(—=). Equation(12) is displayed graphi-
cally for n=1 in Fig. 5. Two thick vertical lines correspond Where
to the complete density matrix. The number of the diagrams

XFip(o(t— 1) —w5—Vs/h)prs(—),

: X 1 (=
that contribute tq;f%‘)(t) is equal to 2~ —the number of Fiam(w')= —f drif, om(T)eEXp( —iw’71), (16)
S . - : 27) o ¢
the Liouville space pathways by which one can achieve state
In)(n| beginning from|1)(1|. are the “intramolecular” 1) absorption(1) or lumines-

cence(2) spectra of a solute molecule

B. Incorporating of optically active intramolecular o om(72) = Trlexp( = (i/7) Wy 72)

vibrational modes

Now let us consider OA intramolecular vibrational xXexp( + (i/h)Wy 71 p1auly (17)
modes. Then Eq.10) can be rewritten in the form

ppS(t—15) + pysP(t— 75)

12> <2 12> <2
1 , [ T
= —|D&(t—7,)| J dry 4
442 —o ¢ w l I
; el ® @ [C)]
Xexgi(Vs/hi+ wz—w(t—13)) 7] 1'2 |2> <2] [1>] <11
i i S ®
Xexl{ngm 7'1) p1a —W)ex;{ ~ 7 Wim 7'1) . (13 @/L‘_H‘\@ ®
Numerous experimerfts®® show that the Franck— [1> <1 11> <1]

Condon molecular state achieved by an optical excitation'EIG 6. The fourth-ord tribution fas(1). The left di t

. . 6. The fourth-order contribution {@,s(t). The left diagram represents
relaxes ,Ve,ry fast and the relaxed mtramOIquIar SpeCtru%e particle creation in the excited electronic state due to photon absorption,
forms within 0.1 ps. Therefore, we shall consider that theihe subsequent particle evolution in state 2 during time then the hole
intramolecular relaxation related to the OAHF vibrationscreation in this state due to photon emission, and the subsequent hole evo-
takes place in a time shorter than the pump pulse duratiopution in the excited electronic state during timg. The right diagram

Such a picture corresponds to a rather universal dynamicétprese_nts the hole creation in the gr.oun_d electronic _stat_e due to photon
absorption, the subsequent hole evolution in state 1 duringtiméhen the

behaVior of large polar chromophores in polar S0|Vem3particle creation in the excited electronic state due to photon absorption, and
which may be represented by four well-separated timehe subsequent particle evolution in state 2 during time
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are the characteristic functior{¢he Fourier transformsof
the intramolecular absorption af or emission ()
spectrunf?

Generalizing this consideration, we arrive at the follow-
ing results for the contributions from ttjeh vertices of the
a), b), and 9 type in Fig. 4:

77 2
a):ﬁ|Dg(t_72m_7-2m—2_"'_7-2j)|
XFlM(w(t_TZm_Tmez_"'_sz)_wgll_vs/ﬁ)a
(18
b= |DE(t )2
-0 U
2ﬁ2 2m 2m-2 2j
XFzm(w(t_sz_sz—z_"'_sz)_wgll_vs/ﬁ).
(19
77 2
C)=—Z_ﬁZ|D5(t_72m_sz—2—”‘—sz)|
XFnM(w(t_TZm_TZm—Z_"'_TZj)_wgll_Vs/ﬁ)-
(20)

Comparing Eq.(11) with Egs. (18)—(20), one can see

that the first equation can be obtained from the last ones b

replacing the intramolecular spectfg), with S-functions.

In contrast to the case of absence of OAHF modes, the con

tributions from the vertices of the and b type distinct from
each other when these modes are present.

C. Inclusion of damping

Consider the fourth order contribution with respect to the

pump field to the density matrix,¢(t) in the Condon ap-

proximation. This contribution is described by two diagrams

shown in Fig. 6

(2-11)

pas()=pZ2 (1) + pZ—2-D(y). (21)

Each term on the right-hand-side of EG1) can be written

as the double convolution of the field factors and the “evo-

lutional” part of the density matrixpS®—""Y(z7,,7,,t)
(n=1,2) that is determined by the evolution in different
electronic states

@n-1y__ |7 T 2
Pos (t)— J’O d7'4j0 d’7'2 2ﬁ2|Dg(t ’T4)|

a
X |DE(t— 74— 1) [p5e " N7y, m2.0),
2h
(22)

where

B. D. Fainberg and V. Narbaev

ng(z_n(_l)( T4, T2 lt)

=exp(—i Los74) Fam(@(t— 74) — 05— Ve /h)

|
1

Xexp —iLysm2) Fiu(w(t— 74— 7'2)_“’5
—Vslh)pr(—),

L,s is the Liouville operator determined by the following
expression: L, A=#%"1H,,A], and [exp(=iLnsT) lkimp
=[exp(—(i/7i)Hns7) knl €XPU/7)HnsD] pi 3 Hns= Ent+ Whs.

We next write Eq(23) in the coordinate representation:

(Q|p5e " (74, 7,,1)|Q")

:J dQnJ def dQNJ dQV
X{(Qexp —iH 2574 /17)|Q")F (0 (t— 74) — 03}
—Vo(Q/AE)NQ"|exp —iH ns72 /1) Q™)
XFip(@(t— 74— 1) — 05— V(Q")/%)
X<lepls(_oo)|QIV><Q|V|eXF(iHnsTZ/ﬁ)|QV>

(23

X<QV|eXF(iH257'4/h)|Q’>, (24)
and introduce new coordinates
Q+Q’
> =0 Q-Q'=q. (25

X|ereQ is a vector coordinate of the LFOA vibratiofi&}.

Let us consider the Wigner representatioit—>3of the
evolutional part of the density matrix and the corresponding
operators Q)

gg%enel)(q-p;TLTz,t)
= ! ) q/ ev(2—n—1) q’
_mfw<q+? P2s (74,72,1) q_7
i
R e q_’ _q_,

i
Xex;{—%pq )dq ,

where Ny is the number of the degrees of freedom of the
system{ g}

We next consider the classicghigh-temperature ap-
proximation. In the high-temperature approximation the den-
sity matrix of the ground-state;;(—o°) can be written in the
form (see Ref. 53

-1
) . (27

(Q-Q")?

2128

Q+Q’

1s 2

<Q|pls(_w)|Q,>=eXF{_

< | ent-pus@1do
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whereU is the potential energy of the systemg} in the It is well-known that an operator depending on the
electronic state 1. coordinates alondlike Fny(w(t— 1) — 05— V(Q")/#)]
The Wigner representation @Q|py(—=*)|Q") is the  will retain its form in the Wigner representation. Therefore,
classical density matrix we drop the subscripV near the corresponding operators.
Ng/2 Bp® In the classical case the Wigner representation of
P1sw(d,p;—®) = E) XF{— T_Buls(q)} (Qlexp(—iHxm)|Q"{QV|expH,s7)|Q’) is the Liouville

space Green functio@,.(pqr4;p’'q’) that obeys the classi-

* cal Liouville equation. Thus, we obtain for
Xf exr{—ﬂuls(q)]dq) . (28 ew(2ene1)/ o . g i
—o Pasw (q,p;74,72,1):
AT CE AR

=qu’fdp’qu”f dp"Gac(PAT4:P' Q") Fam(@(t— 74) — 05— V(A )/7) G p' A 725P"q")

:8 Ng/2 Bp//Z o -1
XFlM(w(t_7'4_72)_wg|1_vs(q”)/h)(z) EXF{_ > _ﬁuls(qu)KJwexq_ﬁuls(Q)]dQ> . (29

The Liouville space Green functiof,.(pqr,;p'q’) in  where
Eq. (29 represents the nuclear propagation from the phase
space{p’q’} to {pqg} in the electronic state 2. It is conve- prs(q”, — )=
niently to use a reduced description, whigig} represents
only a partial set of coordinates related to optically active
modes{wg} which give a contribution t&/¢(q). The effect X
of the remaining modes can be introduced through a random
force and friction in the Langevin equatiGhUsing standard Equationg22) and(31) enable us to write directly an expres-
techniques, one can then obtain a Fokker—Planck equatiasion for the corresponding diagram of Fig. 6. Such a proce-
for the Green function in the reduced sp4t&>*®~>%Classi-  dure can be easily generalized to the calculation of any dia-
cal low-frequency intramolecular and solvent modes are usugram.
ally overdamped. Since, in this case the momentum rapidly ~When OAHF intramolecular vibrations are absent, the
approaches its equilibrium value, it needs not be considereithtramolecular spectraF,, in Eg. (31) convert to
an independent variable. The Liouville space Green functiom-functions. Then integrating E€31) with respect tag’ and
then satisfies a Fokker—Planck equation in the configuratiog”, we obtain
coordinate space, and we obtain for one-dimensional reduce

1/2

exd —BU14(q")]

2m

0 -1
f exg—pUs(a)ldal . (32

de 2—n«1
252

space p Q,74,72,t)
J ! — ’ —
(&—Lns)gnc(q,t;q’bo, Gne(9,0:0")=8(q—q"), (30) =ﬁ2iZJ IV Laj(t= )] V' [Gi(t—ma— 7))
whereL,s is the Fokker—Planck operator in the electronic X Goe( A, 74:0j(t— 74)) Gne(dj(t— 74), 72;

state n. It can be written in the form:L,s=D,(d/dq)
- (1= 74— (1= 74— 1), — ), 33

X((alaq)+ B(aldq)U,«(q)) whereD,, andU,4(q) are the (t= 74— 72)p1a(Qi(t =74 72) ) 33

diffusion coefficient and the potential energy, respectively, inwhere V’(qi)E(dV/dq)|q=qi andq; j(t—7") are the solu-

electronic staten. tions of the equation
In the case under consideration Eg9) may be trans- , ol _
formed into the following equation: w(t=7")— w5 = V(Q)/7=0. (34)

en(2ne1) The quantitiegy;(t— 7') are the intersections of the moving
Pas (9,72, 72,1) photonic replications with the corresponding tefths.

=J7 dq’fﬁ d9"G2c(a,74;9" ) Fam(@(t—74)
D. Double-sided Feynman diagrams for fast optical
~ 05— Ve(@)/H) (@' 7250") dephasing
Let us consider the density matrix averaged with respect
I _ el _ ” " o_
XFam(@(t=74=72) = 051~ Vs(d)/1)p1s(A, =), 4 the intramolecular OAHF vibrationg,,((t). It is repre-
(31 sented by two vertical lines. The left line represents the
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ket{n) and the right line represents the bra-vegof. We

can state the following rules for the double-sided Feynmang-

B. D. Fainberg and V. Narbaev

diagrams for fast optical dephasing and a Markovian randorr

evolution in the configuration coordinate space:

(1) The system evolution depends only on “even”
times. Time increases from bottom to top;

(2) the interactions between system and the pump field
of frequencyw are presented by three types of the rectangu
lar vertices(see Fig. 4. The vertex of the |atype corre-
sponds to electronic transition—12, the vertex of the b
type—to electronic transition-2 1, and the vertex of the)c
type does not change an electronic state;

(3) interactions with applied pump fields are labeled by
the pairs of arrows. The contributions from thi vertices
of the 9—0) types in Fig. 4 are determined by Eq48)—
(20), respectively, wher&/;=V,(q). In the absence of in-

tramolecular OAHF vibrations the corresponding contribu-

tions are equal to

a=b)=-0)

ks

_%“Dg(t_7'2m_72m—2_"'_72j)|2h

XZ IV'[Gi(t= Tom— Tom—o—+ — )] %, (35)

whereq;(t—7'") are the solutions of Eq34);

(4) the system evolution between adjacent rectangular

verticesj and j+1 along the double vertical line in elec-
tronic staten is described by the corresponding Liouville
space Green functiod,.(qj.1,7;:9;). The evolution of
the system in a last even timg,, is described by the term
Gne(d, T2m s Am) -

In the absence of intramolecular OAHF vibrations, the
system evolution between adjacent rectangular verjiees
j+1 along the double vertical line in electronic statds
described by Gnc(dir(t—Tom=— "+ = 72542), 72)  Ai(t— 7o
— == —1Ty;)). The evolution of the system in a last even time
Tom IS described by the ter@,o(d, 7om: di(t— 7om));

(5) the contribution from each diagram {g2"(t) is
obtained by integration with respect to all times

To,Ta, - - - ,Tom and all coordinatesq;,q,, ... ,dyn. The

1> <1 11> <1
= + +
a)
2> [<2|
11> <1 ') 1>¥%y
<
T’ 2> <2 [2>, <2
= o . * >| b)
[2>7 <2 11>%% 12>18<2|

FIG. 7. Graphic summation of diagrams fey(t) (a) andp,¢(t) (b). a: the

first diagram on the right-hand-side represents the unperturbated density
matrix; the second one is equal to the sum of all the diagrams resulting to
the ground electronic state through the hole creation in stétefdarticular,

the second, third, fifth and seventh diagrams on the right-hand-side of the
diagram equation shown in Fig. 5 contribute to this diagrathe third
diagram on the right-hand-side represents the sum of all the diagrams re-
sulting to the ground electronic state through the particle creation due to
photon emissiorithe fourth, sixth and eighth diagrams on the right-hand-
side of the diagram equation shown in Fig. 5 contribute to this diagram

the first diagram on the right-hand-side is equal to the sum of all the dia-
grams resulting to the excited electronic state through the particle creation
due to photon absorption; the second one represents the sum of all the
diagrams resulting to the excited electronic state through the hole creation
due to photon emission.

ar oo
Pns(q,t)=pns(q,—oo)+(—1)”§f0 dr'[DEt—7)?

X Jlxdq,gnc(qaT,;q,)[FlM(w(t_ T,)_wgll

el

—V(q')/1)p11(q",t—7")—Fom(w(t—7")—wy

—Vs(Q')/)paoq’ t—7")], (36)

for n=1. In a similar manner, the complete density matrix
p2s(t) can be represented graphically by the diagrams dis-
played in Fig. Tb). Analytically, this is written by Eq(36)
for n=2.

If we will denotex=t— 7', thenfdr'— [* .dx. Letus
assume thaf(x)=0 for —ee<x=<0. Then["  dx— fhdx,

space integration is eliminated in the absence of the intramcnd we obtain

lecular OAHF vibrations.

E. Summation of diagrams

Let us consider the density matnig,(t) [see Eq(12)].
The same equation can be written also fgi(t) that is
displayed graphically fon=1 in Fig. 5.

If we detach from each term of the series of Fig. 5, from

the second onwards, one rectangle and the line to its upper

(0)

Pns(q,t)=Pns(Q)

t o0
+@mljdmmmﬁ dq’
2#2Jo R

X Gnel A, t=%:9")[Fim(@(X) — 05— V(q') /%)
X p1s(q’,X) = Fom(@(X) — 0%

—Vs(Q) /1) pas(a’.X)], (37

side, the remaining series, excluding terms resulting in thevherepgos)(q)=pns(q,—00). Equation(37) is a central result
density matrix of the excited state, is again the completef this work. It generalizes Eq15) of Ref. 24 to the case of
density matrixp44(t). Thus, the latter can be representedthe excitation of quantum intramolecular modes. In addition,

graphically by the diagrams displayed in Figa)Z Analyti-
cally, this is written

Eq. (37) extends the last equation to anharmonic potentials
U,s(q) which can be of different shape in electronic states 1
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and 2. The quantitieELZM(w(x)—wg'l—vs(q’)/ﬁ), appear- are the probabilities of light-induced transitions @t w,;
ing in Eq. (37), are the intramolecular absorptigl) and  *Kwo—o(X), wx= w5+ ws/2 is the frequency of Franck—
luminescencé?) spectra. They cannot be measured directlyCondon transition 32 with respect to the configuration
for a molecule which is in a polar solvent. However, thecoordinate related tdws}. Here we introduced a new vari-
intramolecular spectr&; », can be determined as the spec- able a=qdw?% so that py,(q,t)dg=ppn(a,t)da. The

tra of the same solute in a nonpolar solvéht. quantity o,(w,q) in Eg. (41) is the value of the cross section
Integrating the both side of Eq37) with respect tog,  corresponding to the maximum of the absorption band in the
we obtain absence of hf intramolecular mod¥s](t) is the power den-
- sity of the exciting radiationg,s= w;/(% B) is the contribu-
(p)an(D)= 5n1+(_1)n_2j dx|DEX)|? tion of the OALF V|brat|ons{_ws} to a second central mo-
2h<J)o ment of an  absorption spectrum, so that

. V20,50, (w,1) I(t) =~ 2(/2)| DE(L)|2.

XJ dq'[Fyy((X)— wgll—Vs(Q')/ﬁ) To obtain a differential equation for the quantity
- sl a,t), we use Eqs(16), (30), (37), (39), (41), and differ-

X p1(0' %) — F o (0(X) — 0% entiate both sides of Eq37) with respect ta:

=Vs(a)/1)pas(q’,X) ], (39)

where &; is the Kronecker deltap);i(t)=fp;s(q,t)dq is
the normalized population of electronic stgté.e., (p);;(t)
=n;, n;+n,=1. Equation(38) is the generalization of Eq.
(20) of Ref. 24 to the case of the excitation of quantum — 8(wo— kwp— o(t) — a)pas(a,t)], (42
intramolecular modes.

(9~ _ _ e
aPnsl @) =Tadpnd @)+ (- 1)™N2m0ze 2 wilt)

X[ 8( w1+ kwo— w(t) — @) pys(a,t)

where
~ Jd
lll. THE EFFECT OF HIGH-FREQUENCY Lns=Ton| 1+ (a— Sppwg)—————
INTRAMOLECULAR MODES ON CHIRPED PULSE d(a— Sppwsy)
EXCITATION

(92

Fops—
Na— 5n2wst)2

, (43)

Let us assume that the potentidlss(q) are harmonic:
Uns(@=E,+ %Z’z(q_ 5n2d)2- ThenVy(q) =fiws/2— qZ)Zd,
where wg,= ®2d2/4 is the contribution of the OALF vibra- 7s,=05/D, is the correlation time in stata. Below we
tions{wg} to the Stokes shift of the equilibrium absorption assumerg; = 75,=175.
and luminescence spectra. As to quantum intramolecular Equations(40) and (42) make it clear that the optical
modes, we will consider one normal intramolecular oscillatortransitions occur not only at= w,;— w(x), but ata=w,;
of frequencyw, whose equilibrium position is shifted under +kw,— w(x) also, wheré 0. Thereforep,(a,t) depends
electronic t_ransition. Its cha_racteristic functiohs . (71) on prs( w1+ Kwp— o(t),t) and pag(wa1— Kwo— w(t),t) for
are determined by the following expressith: differentk resulting in the interference of different channels

f,, om(71)=exp — Sy cothéy) for optical transitions. It has been knoWrthat the interfer-

¥ ence effects in the electron transfer reactions are of consid-
- ) , erable significance for the inverted region. However, the role
X k;m l(So/sinhfo)exik(Go*iwoT1)],  of these effects increases in importance for optical transitions
under the action of chirped pulses. The point is that, first, one
(39 can realize all the Marcus regions in one experiment with
where S, is the dimensionless parameter of the shiff, chirped pulses: the normal region, the activationless region,
=hwe/(2kgT), 1,(x) is the modified Bessel function of first and the inverted region. Second, the optical transitions in our
kind.®* Substituting this expression into E(L6) and using model are controlled by diffusion to or from the intersection
Eg. (39), we get points (depending on the electronic state under consider-
ation), because the hole®r spikes in the distribution ap-
pear around the intersection points. The channels will be
t 0 independent only if the holegor spikes do not overlap.
= \/ZWUZSJ dx E Wi (X)[p1 @1+ kg However, the sliding of the intersection of photonic replica-
0 k=== tion and the corresponding term along the term for chirped
pulsed* results in a delocalization of the holéspikes that

ny(t)=1—ny(t)

~ (). ) = pad @~ ko= w(X),X)], 40 creases the probability of their overlapping. Therefore, the
where interference arises between different channels of optical tran-
Wi (t) = expl — S coth o)l sitions which can not be considered separately.

We have solved Eq42) numerically assuming that for
X (Sg/sinhfy)expkbg) oa(w,q)I(1), 47 HF intramolecular modes wy>kgT. Then
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—/ ' 2 / Uz, FIG. 9. The excited-state population; after the completion of the pulse
1 L , oy ! Seo-7 ] action as a function of the linear chirp rate with (1) and without(2)
SO /“z @ Py b g OAHF intramolecular modes. The parameters are—,1)/ ws=0.5,
0 o N 0 L] A e, g/ (2ksT)=2.834, Q"= 0a(w2) Imaty=2.5, 7s/ty=2, wolwg=1, Sy
1 ° 1 2 1 0 1 2 =0.3 (1) and 0(2). Inset: Equilibrium spectra of the absorptioA)(and
the emission E); the arrow shows the relative position of the carrier fre-
™ ‘ o N i quencyw.
2 £ = f i
" 1 2 \ Uy uy |
77
1 L, 4@ 1t D
>N u . X
S A\k/ﬂ P N densed phase.. The calgulatlon results, obtalned_ by(45).
0 = T = 0 tpoms=t == 0 and the numerical solution of E¢42) for a Gaussian pulse
-1 0 1 2 -1 ] 1 2

of the shape
E()=&texplie(t))=E ex —3(6*—iu)(t—ty)%],
(47)

FIG. 8. Dimensionless nonequilibrium populations of molecular electronic
statespp(a,t) = wepns(a@,t) With (right column and without(left column)
OAHF intramolecular modes at different time moments—{y)/t,
=-1.3 (), —0.27 (b), 0.03 (c), 0.33 (d), 0.6 (e). Other parameters are:
(0= wy)/ w5=0.8, hhwg /(2kgT) =2.834, Q"= 0 3(w21) Imatp=2.5, 75/t,

=2, —puty/wg=0.8, wg/wg=1, S5=0.3 (right column and 0 (left col-

are shown in Figs. 8—10. The inset to Figs. 9 anthiléhow
equilibrium spectra of the absorption and the emission of

umn.  Up=h(a— w9 (2e?)+koglog  and  up=ha?/(202)
+kogl/wgt+[w(t)— wg'j]/wst are dimensionless potentials corresponding to
the excited state 2ug,) and the photonic replication’ bf the ground state 05851 b )
(uyqy), respectivelyk=0 and 1 correspond to the vibrationless state and the Phe -7
first vibrationally excited state, respectively, with reference to the HF in- o~ e
tramolecular modevg. U,=Up,. 0 ! Co035 7 !
-35-25-15-05 05 15 25 35
(0w, Vo, 2.
N
0.15
5 -3 -1 1 5
S‘g o"(v)infs®  x10°
W (t)=exp(— Sy) oa(wop) I(1), 44 p
(1) =exp(— o)y oal @20 I(1) (44 - T ossla
0ss L ] !
wherek=0. We used the following initial condition: NN e o~ \ /
c : 0.35 S
~(0) 12 2 0'35\3 : ~. - -]
Pn (@)= 6n1(2mas) ““exf —a®/(20) ]. (45) - SR
: N
. . . 0.15 - 0.15
The normalized populations of electronic states can be 5 -3 1 1 3 5 S5 -3 1 1 3 5

" (Winfs®  x10 o infs®  x10°

calculated using Eq40), or by direct integration op,«(a,t)

with respect tow FIG. 10. The excited-state populatiop after the completion of the pulse
action as a function of the phase tedi(») with (1) and without(2) OAHF
intramolecular modeg—d). The detuningsd — w,;)/ wg; are equal to-0.5
(b), 0 (c) and 0.8 @); other parameters ardiwg/(2kgT)=3.38, Q’
=04(w21)Imadp=2.5, 7s=70fs, 750=11 fs, o/ ws;=1, Sy=0.3(1) and 0

. . . . (2). a: Equilibrium spectra of the absorptiod) and the emissionK); the
We are interested in studying the effect of quantum in-arrowsb, c andd show the relative positions of the carrier pulse frequency

tramolecular modes on the chirped pulse excitation in conw for Figs. b—d, respectively.

nj(t):J;js(a,t)da. (46)
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model systems. One can see a progression with respect to an U
OAHF vibration. Each member of this progression is broad- U, (Qwmsq)
ened mainly due to the presence of LFOA vibrati¢as}, T

because the OAHF mode is underdampsee Eq.(39)].

Figure 8 depicts the nonequilibrium populations of mo-
lecular electronic states 1 and 2 at different time moments
when a molecule is excited using a positively chirped pulse R Uz (Qud)
(u<0). For comparison the left column shows the corre- B\ >
sponding dependencesg(«,t) in the absence of the OAHF q
intramolecular modes. One can see peculiarities in the quan- /
tities ppo(a,t) [spikes inp,s(a,t) and holes inp;<(a,t)] Qu
corresponding to the instantaneous intersections between a U; (Qwm,q)
moving photonic replication and the corresponding term, in-
volving distinct intramolecular vibrational excitations. It is
seen that the presence of high-frequency quantum modes Uy (Qu0)
(the right column gives rise to parallel vibronic channels, 1w d >
which directly influence on the excitation of a molecule. 0 q

Let us study the influence of the chirp rate on the inte-
gral excited state population, after the completion of Qu
pulse action. Experimentally, one measures the integrated
fluorescence which is direcﬂy proportiona| . Figure 9 FIG. 11. The picture of two_—dim_ensional potentialy is the coordinate of
shows the effect of HF intramolecular modes on the excited® ©AHF intramolecular vibration.
state populatiom, as a function of the linear chirp rate
wm(de/dt=ut). Experimentally, the chirped pulses are ob-
tained by changing the separation of pulse compression grat- 1hus, the effect of OAHF intramolecular modes strongly
ings. Then the paramete and » are determined by the depends on the carrier pulse frequency
formulag>24

8%=2{ 15 +[ 20" (w)/ Tpo]?} %, IV. CONCLUSION
(48)

UZFC(QM’O)

In this work we have studied the effect of HF intramo-
lecular modes on the chirped pulse excitation in condensed
where ®"(w)=®"(v)/(47?) is the phase term. Therefore, phase. The problem was solved using the double-sided Feyn-
Fig. 10 showsn, as a function of the phase term. One canman diagrams®—® We have shown that the application of
see from Figs. 9 and 10 that incorporating the intramoleculathe double-sided Feynman diagrams to systems with fast
modes increaseas, due to the parallel vibronic channdlsee  electronic dephasing opens up new possibilities for using this
Fig. 8 when a molecule is excited near the-@ transition  technique in resonance nonlinear optical spectroscopy. The
with respect to the OAHF vibratiofFigs. 9 and 1@)]. Ifthe  novel potentials are including strong system—bath interac-
molecule is excited near the-©0 transition with respect to tions (non-Markovian relaxationand the summation of dia-
the OAHF intramolecular mode, the effect is oppo§keys.  grams.

10(b) and 1Qc)]. We have formulated the diagrammatic technique for fast

These results can be explained by the picture of two-optical dephasing by the partial summation of definite dia-
dimensional potentials corresponding to the OA undergrams and then carried out a total diagram summation. The
damped HF mode and LF vibratiorisee Fig. 1L If the partial summation of diagrams is carried out by introducing
pulse frequency corresponds to the-Q transition, the first the rectangular vertices, which are the sums of two subdia-
field interaction excites a molecule to the first excited levelgrams corresponding to the nondiagonal density matrix ele-
of the intramolecular HF vibration. This intramolecular ex- ments in techniqué® Introducing such vertices strongly di-
citation relaxes very fast to the vibrationless state of thisminishes a number of the diagrams under consideration.
vibration (the HF mode is in equilibrium in the time scale In our technique the system evolution depends only on
under consideration Therefore, a second field interaction even timegsee Sec. Il . The similar approximation of very
only can bring more amplitude up, creating population in thefast dephasing during odd time periods was used by Muka-
excited state, and it cannot bring the amplitude from the firstnel, Yan, and Sparpaglione in their works on electronic
field interaction back down to the ground electronic s&te  transfer rates to sum an infinite serfé§>
In contrast, if the pulse frequency corresponds to the® Damping in our technique is included as a random per-
transition, a second field interaction can bring the amplitudd@urbation by a Markovian process in the relevant electronic
from the first field interaction back down 18,, creating a state. As this takes place, the relaxation itself is not Markov-
displaced hole in the ground electronic state. Hence an excian since a system—bath interaction can be strong. A Mar-
tation in the range of the -8 1 transition creates a nonsta- kovian nature of a random perturbation enables us to write
tionary excited state component, while an excitation in theeasily an expression for the corresponding diagram in any
range of the 6-0 transition discriminates against it. order with respect to the light—matter interaction.

p=—A40"(w)[ 7+ 4d Y w)] 2,
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