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Abstract. A theoretical basis for the solvation dynamics study of complex
molecules in solutions by resonance four-photon spectroscopy has been developed. A
non-Markovian theory of four-photon spectroscopy of electronic transitions in complex
molecules has been generalized for the “non-Condon” tensor case. It has been shown
that for definite conditions the cubic susceptibility X, describing four-photon
interaction, can be expressed as a product of “Condon” and non-Condon parts. The
latter describes the mixing effect of different electronic molecular states by nuclear
motions (Herzberg—Teller effects). The Condon part depends on the excitation
frequency, and the non-Condon one depends on the polarization state of the pump and
the probe beams. It has been shown that the Condon resonance transient grating
spectroscopy is a good method for the investigation of ultrafast solvation dynamics.

The dependence of the non-Condon part of x® on the polarizations of the
interacting beams permits one to formulate the principles of a new method for the
investigation of Herzberg-Teller effects on electronic molecular transitions by
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transient polarization four-photon spectroscopy.

1. INTRODUCTION

Ultrafast time-resolved spectroscopy has been applied to
probe the dynamics of electronic spectra of molecules in
sclutions.'”* Typically, a fluorescent probe molecule is
electronically excited and the fluorescence spectrum is
monitored as a function of time. Relaxation of the solvent
polarization around the newly created excited molecular
state led to time-dependent Stokes shift of the lumines-
cence spectrum. Such investigations are aimed at under-
standing the mechanism of solvation effects on electron
transfer processes, proton transfer, etc.'*

Recently, an interesting phenomenon has been ob-
served: the existence of fast (subpicosecond) compo-
nents in the solvation process.*” In this regard, a new
method for the observation of ultrafast solvation dynam-
icshasbeen used?® (seealsorefs 9, 10): resonance transient
grating spectroscopy (RTGS).""** In this method (Fig. 1),
two short pump pulses with wave vectors k, and k, create
alight-induced grating in the sample under investigation
with wave vector q =k, — K. The grating effectiveness is
measured by the diffraction of a time-delayed probe pulse
k, with the generation of a signal wave vectork =k, + (k|
—k,). This method is characaterized by high time-resolu-
tion and provides additional spectroscopic information.
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In particular, it also measures the dynamics in the ground
electronic state,’? which is absent in luminescence
measurements. We shall show thatR TGS israther sensitive
to the solvation dynamics for definite conditions and
reflects its fine details. We shall also determine the
optimal conditions for the experiment.
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Fig. 1. Geometry for transient grating spectroscopy.
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Huppert and coworkers® also investigated ultrafast
solvation processes by the induced resonance optical
Kerr effect (OKE). For this effect k, =k , and therefore
q=0andk_=k,. However, the polarizations of the probe
(k,) and the signal (k) pulses are perpendicular (the
signal is discriminated by a polarizer). Naturally, the
polarization of the pump pulse forms an angle that is not
equal to /2 with respect to the polarizations of both the
probe and the signal (in particular, a probe pulse can be
elliptically polarized).

The use of polarization spectroscopy (in particular,
OKE) opens new possibilities for ultrafast solvation
study. These studies can provide pertinent information on
the role of the non-Condon effects (the dependence of the
transition electronic matrix element on nuclear motions)
during the solvation process. The importance of such a
theoretical study is related to the observation' that the
transition moment rotates during the fast initial stage of
the probe solvation and to the non-Condon effects's in
reactions of intra- and intermolecular electron transfer.

The possibility of the study of non-Condon effects by
resonance polarization four-photon spectroscopy can be
explained as follows. The signal behavior in transient
resonance four-photon spectroscopy does not depend on
the exciting pulses’ polarization if the vector of the
electronic transition moment does not depend on nuclear
coordinates (the Condon approximation).'>'™2! In the
opposite case, when the electronic wave functions, and
consequently the dipole moment of the electronic transi-
tion, depend on the nuclear coordinates, the vector
properties of the electronic transtion change during the
nuclear relaxation process, and therefore the time behavior
of the signal generally depends on the excitation pulses’
polarization. Thus, comparison of the signals obtained by
two methods, i.e., RTGS and OKE, is a powerful tool for
the investigation of Herzberg—Teller effects (mixing of
different electronic molecular states by the nuclear
motions). The study of non-Condon effects is more
general than that of solvation dynamics alone.

In this work, we develop a theoretical background for
both RTGS and nonlinear polarization spectroscopy of
solvation dynamics.

The signal of RTGS of complex molecules in solu-
tions has been calculated in refs 11 and 12, using the
Condon approximation. Here, using the general formu-
lae," we shall obtain expressions that are convenient for
the investigations of solvation effects of complex
molecules.

Itis worth noting that although the non-Condon theory
of resonance four-photon spectroscopy was already
developed in ref 20, it was considered only for a scalar
case. Therefore, in this study we shall generalize a non-
Markovian theory of four-photon spectroscopy of
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electronic transitions in complex molecules'>'®2° for the
non-Condon tensor case in order to include polarization
effects. We shall calculate the cubic polarization P of
the electronic transition of a molecule in solution. Using
P®, one can calculate a signal in any method of four-
photon spectroscopy (not only in RTGS and OKE but
also in “pump-probe” spectroscopy.)??2%

The signal power / in the k_ direction at time ¢ is
proportional to the square of the modulus of the
corresponding component of P®*;

L(1) ~ PO (r, )P ¢)]

In pulsed experiments one usually measures the depen-
dence of the signal energy J_ on the delay time 7 of the
probe pulses relative to pump pulses:
70 ~ [ de P @
In the pump-probe ultrafast experiments,>*? the sig-
nal is proportional to P®. In transmission “pump-probe”
experiments® the dependence of the change in the
transmission AT on the delay time T between two ultrashort

pulses is measured. This dependence AT (1) is given
by20,26

AT(z) ~ —Re f dt Erpg (1~ 0 (P exp(ion)] (3)

2. MODEL AND GENERAL EXPRESSIONS
Let us consider a molecule with two electronic states n =
1 and 2 in a solvent described by the Hamiltonian

Hy= 5By, + W@, E>E @)

where E_ and 2y_are the energy and inverse lifetime of
state n, W (Q) is the adiabatic Hamiltonian of a reservoir
(the vibrational subsystems of a molecule and a solvent
interacting with the two-level electron system under
consideration in state n).

The molecule is affected by electromagnetic radiation
of three beams

E(r,p) = E*(r,t) + E<(r,p) =
5 mil (&, expli(k,r - o,0] + c.c}

Since we are interested in the solute—solvent intermo-
lecular relaxation, we shall single out the solvent contri-
butions to E, and W (Q),

E,=E +(V;") )

(6)

where W is the Hamiltonian governing the nuclear

WD) =W, +W, +W,



degrees of freedom of the solvent in the absence of the
solute, W, is the Hamiltonian representmg the nuclear
degrees of freedom of solute molecule, E! is the energy
of state n of the isolated molecule, W_and V;' describe
interactions between the solute and the nuclear and elec-
tronic degrees of freedom of the solvent, respectively. It
is possible toreplace the operators V¢! in the Hamiltonian
by their expectation values (V;' ).

The equation for the density matrix of the system can
be written in the form!'®!°

p=—i(L, +L)p )

where L and L, are the Liouville operators defined by the
relationships L p =#"'[H,,p] and L,p ="' [-D-E(r,1),p];
D, =D, are the matrix elements of the dipole moment
opemtor of the investigated molecule, which are generally
functions of the reservoir variables (nuclear coordinates).
Using the interaction representation (int) by means of the
transformation p™™ = exp(iLf)p and Li" = exp(iL,f) L,exp
(~iL 1), and solving the resultantequations by peﬂurbauon
theory with respect to L{" in the third order, using the
resonance approximation, we obtain the following
expression for the cubic polarization of the medium from
equation 4 of ref 19:

PO, ) =P (rt) + cc. =
NL; (Sp D,,p,2®) +c.c.), (8a)

where N is the density of particles in the system; L, is the
Lorentz correction factor of the local field; (...) denotes
averaging over the different orientations of the mol-
ecules.

The a’th component of P®* (a,b,c,d =x,y,z) is given by

reservoir

lN4
8’

x 2 exp [i((k, + K.~k r - (@, + 0. - 0]
X é fﬁ” dar, dr dv.exp{-li(w, - ®

-, - 0,) + T Jt,-71,}

PO*(r,1) =

-0 +0)+YT,

x {expli(m,,

x&, (-1

- wm)T3]P ‘labcd(rl’TZ’TS)gm'c(Z -7 - Tz)

1~ Ts) + exp[—i(mﬂ - (Dm.)T3]F Zabcd(ﬂcl’TZ’T3)

X& (-1, -1,-1 )&, (t-1,-17)} &.(-71)(8b)
where T, = (2y,)" = (2y)"' is the lifetime of the excited
state 2, 0, ="' [E,— E, — (W, - W))] is the frequency of
the Franck—Condon transition 1 — 2;(...)=Tr_(...p,)
denotes the operation of taking a trace over the reservoir
variables; p . = exp[-W /kT]/Tr_[exp(-W /kT)] =

Tla)

P (o] is the density matrix of the reservoir in the
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state 1 (here and later the Greek letter indices are used
to represent the variables of the reservoir). The func-

tions F, ., are tensor generalizations of the functions

12,18-20
F].Z

F

ATy +T + )
labcd 1’ 2"c ) ( ZRIOL ’1o’,2B10

b(wa) RE®
+ Rzma-,zpzﬁ 2p2p 1028 |

P ®)

T,T,) =

b(T, + T3) AT)
X [Rzﬂm'.mm' Rlala',luzﬁ'

d(0)
X Rla2ﬂ',1a1u

F2abcd(T] ?

h(TrI +1T,) Rd( 4) Rdo)
2B1a, 1ovle Mol 2B 100 “428' 10, lala

( ): [Rigiasme R
R?((:H:zzm R;(B?;-%Zﬂ Rg(ﬂgé‘.zlilu ;(Bol)a lala ]P ) (10)
where for the sake of convenience, we have introduced a
superoperator R defined by [D, 1, R® = exp(iLo1)
XRexp(-iLot),Lo =07 W, 1W =2 ImW (W, =

W, x W, = W,—(W,-W).
Going over to the operators in the Hilbert space in eqs

9 and 10, we finally obtain

Flabcd(Tl’TZ’TS) dcab(o T T +TZ+T3’TZ+TS)
+K dbac(O,tz+'l:3,'t1+1:2+1:3,'c3)

B 2abcd(rl’12”c}) = K:dba (0’T3’Tz+13’11+T2+T3)
+ Kopa (0T 4T,41,,T,+7,,T) (11)
where
K, Ottt = (Diexp(iW,t /n YD exp(iW, (1, — £, )/)

x D5,exp(iW, (1, — t /R )Dyexp(—iW,t/n)y,  (12)

are the tensor generalizations of the four-time correlation
functions K(0,t,,t,,t,) which were introduced in four-
photon spectroscopy by Mukamel.””

It follows from eqs 8b—12 that the nuclear response of
any four-photon spectroscopy signal generally depends
on the polarizations of the excited beams because of the
tensor character of the values F,,,  and K, (0,1 ply)-

For computing the latter in anon-Condon approxima-
tion, we shall use the method of ref 20.We shall expand
the matrix elements of the operator of the dipole moment
of the electronic transition in a Fourier integral,

Doy (Q) = [ & Dy (®)e™ (13)

Substitution of eq 13 into eq 12 leads to the expression
K, Ot,t,t)=

ifl] d% az *d= "dz <ﬁ12(é)15‘;1<ae') Dy, (&) Dy &™) ),

(el QX Texpt [ (O Dexp(@ QU Dexp(@ QL)

x(Texpif [ u @) (rrexpt [ e Q)
(14
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which is a generalization of equation 7 from ref 20 for a
tensor case. Here an operator A(f) (A = u,Q) is defined as
A(r) = expl(i/h YW 1] Aexp[(ifhi )W,1]. The value u = W,
— W, determines the strength of the bonding of the vibra-
tional subsystem with the electronic transition and char-
acterizes the so-called Condon perturbations of the
electronic transition (unlike non-Condon perturbations
which are determined by the dependence D, , (Q)). T
and T* are chronological and antichronological ordering
operators, respectively.

In order to calculate eq 14, we ought to know the
connection between Q and u. We shall assume that this
dependence is basically linear:

u=C-Q

The latter is correct, for example, for the contribution
to u from the solvation effects, for the linear electronic—
vibrational coupling, etc. In the latter case, u, = ©°dQ,
where d, is the shift of the equilibrium position of the i’ th
vibration upon electronic excitation.

Using eq 15, we compute eq 14 by expanding it up to
the second order in u and subsequent transition to a
cumulant expansion of the second order. As a result, we
obtain the generalization of equation 8 from ref 20 for a
tensor case:

K, (0,1,1,1) = K*0,t,,1,,1) - Kus (0i1,1,,2) (16)

(15)

where

K0, ,t,,t,) = explg(t, — 1,) + g(t) + g(t, - 1)

—-g(t,)—g(t,—1) + g()] (17)
is the Condon contribution to K(0,¢ ,z.,t,)'*'*'* and
20 =" f dri-1) Kt (18)
0

is the logarithm of the characteristic function of the
spectrum of one-photon absoption after subtraction of a
term which is linear with respect to ¢ and determines the
first moment of the spectrum.

K(1) = (u (0) u (1))
is the correlation function of the value wu.
KacaO1,1,t) =
[IIf am az 'd® "d& " (Di(®) Dy, (&) D}, (&) Dy @) ),
x exp{-h X C;' [2(g(t,) - g'¢) - &« )] +
®/(g(t,—1) - 8'(t, 1) — ') + 2"(g/(t,-1) - 8/¢,)
-8t 1))+ &g, ) ~8/¢) - 8@, )]
-2c [% KO)e2+22+2+2") + & (@K()
+&"K (1) + 2 K (1) + 2" 'K, 1) + 2 "K(1,-1,)
+2'2"K(t, 1)} (20)

(19)
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is the non-Condon contribution to the four-time correla-
tion function, g'(f) = %g(z). Equation 20 is correct if the
value « is a Gaussian one (intermolecular nonspecific
interactions, a linear electronic—vibrational coupling, etc.),
and also in the case of a weak electronic—vibrational
coupling, irrespective of the nature of u.

In the case of a strong electronic—vibrational interac-
tion (large values of «) when the Gaussian approximation
isinvalid, one must use eq 14. Such situations are encoun-
tered in the case of optical transitions between states with
multiwell potentials corresponding to different isomers
or conformers of molecules, Jahn-Teller systems, sys-
tems undergoing chemical transformations, etc. We shall
discuss the calculation of the four-photon correlation
functions for such situations elsewhere.

Expressions 8, 11, and 13-20 solve the problem of
calculating the cubic polarization of large molecules in
solutions in the non-Condon approximation. Here we do
not consider the rotational motion of a solute molecule as
a whole. The corresponding times are in the range of
several hundred picoseconds for complex molecules and
are not important for ultrafast investigations (<10-100
ps). In the ultrafast range such effects are only important
for small molecules. One can take into account the
influence of the rotational motion of an impurity mol-
ecule on P® by the approach of Mukamel and cowork-
ers.”!

3. SPECTROSCOPY OF SOLVATION DYNAMICS
We shall apply the general expressions obtained in the
preceding section to the spectroscopy of the solvation
dynamics. We shall look at molecules with broad struc-
tureless electronic spectra and consider the case of a
pump pulse duration longer than the reciprocal band-
widths of both the absorption and the luminescence
spectra and longer than the dephasing time of the elec-
tronic transition. For these conditions we can neglect the
dependence of the field amplitudes & on both T, and
T,,''71*2°% and thus eq 8 is simplified. Here and below we
consider ®, =0 =0 _=wandk =k, +k -k

P @(r,1) = exp[—i(or — K r)] é'r at, x5 (@)

X & &ult ~T)E,( ~VF (¢ 1)+ 7,0, ~T-1,)]
1)

where

! iNL! [ !
Aiea (DT, Ticge 1] 3R [ie,, — ) + YT, ~ /T, -]
x {expli(w,, — 0)T,]F

labcd(Tl’TPTS) i exp[—i(mu I m)Ts]

XF,, (1,71,T)} dtdr, (22)



The second addend in the second square brackets of eq 21
describes the so-called coherent spike. It is equal to zero
for non-overlapping pump and probe pulses (T > pulse
duration).

Thus, the cubic polarization corresponding to the
generation of a signal with a wave vectork =k  +k .-
k_ can be represented as a sum of convolutions of the
nonstationary cubic susceptibilities X3 (@,t,) with the
sum of the products of field strengths. It is worth noting
that eq 21 is correct for a more general case than the
Gaussian approximation.

In order to integrate eq 22 with respect to dt, and dt,
we must define the system under consideration. Since the
value u consists of twoparts: u=u,+u, whereu,, =W,

W (W, e ) then K(t) K WD+K (t) and g
= gu(®) + g.(1), where K, (O = {u,, (O)u @®) and K@) =
(u 0 () = 1%, 50, 0, = (uf(O))h k is the Condon
contribution from the solvent to the second central mo-
ment of both the absorption and the luminescence spec-
tra. In addition, one can represent the four—photon corre-
lation functionsin the form: K, _(0,¢,1,,t,)= =K% (0, Lolosty)
X Ko (02,581,

Since we are interested in non-Condon effects in
solvation, we shall consider for simplicity the “intramo-
lecular” four-photon correlation functions as Condon
ones. Thus, using eq 16, we obtain

KOst tt) = Ky (0,1,,,,8) X KE(0,1,8,01,)

X K1 o (0,1,0,1,) (23)

We shall consider the translational and the rotational
motions of liquid molecules as nearly classical at room
temperature since their characteristic frequencies are
smaller than the thermal energy k7. The solvent Condon
contribution ®_ to the Stokes shift of the equilibrium
spectra of the absorption and the emission is of the order
of 1000 cm™. For the classical case we have?>?

kT

st ﬁ
Let us denote by T the characteristic time of the

attenuation of the “solute—solvent” correlation function
K (t). Inany case, T, > 103 s (ref 5). Since 6, 42 ~ 101 ;!
the parameter ¢,-t? > 10> >> 1. Let us consider the
solute—solvent four-times correlation functions
K.;°(0,t,,1,). They are determined also by eq 17 where
one ought to make the substitution g(t) -8, (t) Because
of the inequality 6,7 >> 1, there is a large parameter in
the exponents in eq 17 for K 240,1,1,1). Tt is possible to
limit oneself by the expansion of these exponents to a
power series expansion at the extremum point. It is
possible to show!"'217-20 that for a nearly classical case,
the extremum pointis T, = t,=0, and 7, is arbitrary. In our
case T, is of the order of the time of the intermolecular

G, =0 (24)
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relaxation time. We shall consider the latter to be greater
than the intramolecular relaxation time. Therefore, the
intramolecular functions g, (¢) (eq 18), which depend on
, will alternate to const Keeping this in mind, and
expandmg the exponents in the equations for K;(0,1,,,,t,)
with an accuracy up to the second-order terms at the
extermum point, we obtain'!17-20
K C(0,T,,T,4+T,4T,T,+T,)
= expl-22 (@ +T 7 21,51
K0,T,,T,4T,,T,+T,41) (25a)

FC
K, O, +1,7,41,41,T,)

FC»
K, (0,7 +1,41,T,+1,T,)

= expl-i2tIm g (1) - E @ +T 7 211,54)] (25b)
where -2 Im g (1) = 0 [1 - 5(7)].

The variable T, determines the evolution time of the
molecule wave function over the potential surface of the
ground electronic state for the four-time correlation func-
tions K(0,t,,T, + T, + 1T,,T, + T,) and K*(0,7,,T, + 7,7, + 7,
+1,). Actually, the correlation function K(0,7,,T, + T, +
T,,T, + T,) can be interpreted in the following way,'>****
usingeq 12 (¢, =T, 1,— 1, =T, +7T,,1,—1,=-T,1,=T,+7T,).
The molecule is initally found in the ground electronic
state |1) and its wave function during the time interval T,
+ T, evolves along the potential surface of this state. At
time ¢ = T, + T, an absorption of a photon occurs; during
the time interval 7, evolution of the wave function of the
molecule along the potential of the excited state [2)
occurs; furthermore, during the time interval —(t, + 7,),
evolution occurs again along the potential of the ground
state |1); then during the time interval —,, evolution
occurs along the potential of the excited state; and finally,
transition to |1) occurs.

The correlation function K*(0,t,,7T,+7,,T +T,+T)(, =

t,—t,=T,04—-1,=1T,1,=1 +1,+1,) isinterpreted
similarly. Thus, the correlation functions (25a) describe
an intermolecular relaxation in the ground molecular
state |1).

Using eq 12, one can show that the variable T, deter-
mines the evolution time of the molecular wave function
over the potential surface of the excited electronic state
for the correlation functions K(0,t,+1,,T +1,+1,1,) and
K*(0,7,+1,+1,,T,+1,,1,). Thus, they describe a solute—
solvent relaxation in the excited molecular state |2).
Hence one can easily understand the appearance of the
term ®_[1-S(t,)], describing the transient Stokes shiftin
the right-hand side of eq 25b.

Let us turn to the calculation of the non-Condon parts
of the four-time correlation functions. We shall use eq 20
(for the substitutions g(r) — g () and K(1) — K (1)) and the

fact that T, , <<, for the calculation of K o, 1t ,t,). AS
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a result, using eqs 11, 16-20, 22, 23, and 25, we obtain

AR (0,7,) = ~2°NLL A exp(— /1)
X [Biea” (T)A(0,T)) + Bye” (T)A (0,1,)]  (26)

where A (w,t,) describes a Condon contribution to X, and
Bioi*®(t,) describes a non-Condon (Herzberg-Teller)
contribution. We shall consider them in the correspond-
ing sections. If one neglects the difference between B
and B (the correctness of such an assumption will be
discussed below), we can represent X5, (w,t,)as a prod-
uct

X (0,7,) = X2(@,7,) Bas” (T,) 27

of the Condon
X2 (o,1,) = —i2m*NL; 1 exp(-1,/7)A(w,T,)  (28)

and the non-Condon By(” parts. A(w,T,) = A (0,T,) +

Aw(u),tz). Below we shall consider their contributions to
X separately.

3.1. Condon Nonlinear Spectroscopy

The Condon contribution to ¥ is determined by the
term %", which describes the signal attenuation due to
the relaxation of the population grating, and also by
A (w,t,) and Aq,(m,tz). The term A _(w,7,) is connected
with solute—solvent relaxation (solvation dynamics) in
the ground electronic state |1), and the termA‘p(m,rz), with
the solvation dynamics in the excited electronic state |2).

Solvation Cordinate

Qs

For non-overlapping pulses whose pulse duration is
shorter than the characteristic time of solvation dynam-
ics, the signals J (1) (egs 1,2) and AT(t) (eq 3) are the
following:

J () ~ IYiea (@,0)F (29)

AT(T) ~ - Im)Q, (0,7) (30)

Let us consider the main physical processes occurring in
a solvating system under a laser excitation (Fig. 2).

The pump pulses of frequency  create a hole in the
initial thermal distribution relative to a generalized solva-
tion coordinate in the ground electronic state and, simul-
taneously, a spike in the excited electronic state. These
formations tend to the equilibrium point of the corre-
sponding potentials over time, and are broadened during
their movements. These changes are measured by the
probe pulse delayed by time T relative to the pumping
pulses.

Let us adduce at first the equation for A without
taking into account the intramolecular degrees of free-
dom'

.2
A, (OD=F (0-0,)[F,_ (-0, D+igX, (0-0, )]

(3D
where e = equilibrium value.
The equation completely corresponds to the physical
processes taking place in solvation of the system consid-

b
UZ(QM,QS)

U,(Qm.Qs)

Fig. 2. Potential surfaces of the ground and excited electronic states of a solute molecule in liquid. (a) One-dimensional potential
surfaces as a function of a generalized solvent polarization coordinate. (b) Two-dimensional potential surfaces of the ground- and

excited electronic states.
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ered before. The values of A _(,7) andA (,7) depend on
changes related to nonequilibrium solvation processes in
the absorption (¥ ) and the emission (F ) spectra, corre-
spondingly'?

F,(0-0,,0= JTZ—(IMT" explHo- o, (D260
(32a)
at the active pulse frequency m, as well as on the corre-
sponding changes in both the spectra of the refraction
index X (o — o, 7). X, , are connected with the corre-
spondmg valuesof F by the Kramers—Kronig formula,
and have the following form'?

~ 0y 4(T)
Qo) |’

(32b)

Xl0-0, 10)=F (0o- mw,t)Erﬁ[

Erfi () = f exp (P)dy

As canbe seen from eq 32a, the changes in both spectra
F, , at each instant in time T are Gaussian functions with
time-dependent width proportional to [20(T)]"?

(1) = 6,4(1 - SX(1)) (33)

Thus, it follows from eq 33 the widths of the light-induced
changes in both spectra are small for small delay times T
(S(t) = 1). The hole and the spike distribution broaden in
time relative to the solvation coordinate (Fig. 2a).

The detunings -, (T) of F, oo Are functions of time 7'

0 (1) = 0, + (0-0,)S(1)

0,(7) = (0, - ») + (0-0, +©)S(T) (34

The frequency ®_(t) is connected with the motion of the
hole in time, and the frequency ww('c) is connected with
the motion of the spike (Fig. 2a).
The values X (o) w, ’C) which are related to ¥ ‘p(m
o, 7 by the Kramers—Kromg formula, display the
correspondmg changes in the index of refraction.

Let us now take into account the intramolecular vibra- *

tions. In this case the adiabatic potentials will be repre-
sented by hypersurfaces (Fig. 2b). And the corresponding
absorption and emission spectra will be represented by
the convolutions

F:(co—mu):f d WF,(0)F,_ (0-w, -0) (35a)

F (o, -0, -0)= f d oF (0)F, (@, -0, -0-)
(35b)

The shape of the intramolecular spectrum F, (®') is
determined schematically by the “1-D” potentials
U (0,,0) and UzFC(QM) (Fig. 2b) that are obtained by the
intersection of the hypersurfaces U,(Q,,Q,) and
U (Q,,,Q,) by a vertical plane passing through the “mo-
lecular” coordinate Q,:
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F (@) = @n)" f diexplg, (0 —iwt]  (36)

The solute—solvent spectrum F is determined by “1-D”
potentials that are obtained by the intersection of the
hypersurfaces by a vertical plane passing through the
solvation coordinate ..

The situation is similar for the emission spectrum.
Typical “intramolecular” and whole spectra are shown in
Fig. 3.

We now calculate A, (w,7) in the general “2-D” case
where both the intramolecular and solute—solvent
contributions are taken into account. The calculation is
the generalization of the results'? for the case of an
arbitrary spectrum F ('), corresponding to the
reorganization of the ultrafast intramolecular degrees of
freedom during the electron transition.

Bearing in mind eq 35, one might assume that the
spectral changes in eq 31 must be changed by the corre-
sponding convolutions with the “intramolecular” spectra.
However, itis correct only for the long time limit value of
A, (00):

A®1)], = Fo(0-0)F(0-0,) + F (0, -0, - 0)

- P, (- ,) + iD, (0, — 0, - )] (37

Here @}, are the equilibrium spectra of the refraction
index corresponding to the absorption (£, ) and the emis-
sion (F; ) spectra:

e P s ((l))
@, () =ﬁf T
Shmy ; 1 -
7| do F(F, (o, —m)Erﬁ( JTGT_) (38)

|
20

T
-60 -40 -20 0

Fig. 3. The shape of the “intramolecular” spectra F, (®'). 1 and
2 are the equilibrium luminescence and absorption spectra of a
molecule, respectively, when the contribution from the solvent
is absent; 3 and 4 are the equilibrium spectra of a molecule in
solution. The arrows show the relative positions of the excita-
tion frequency ® for the four-photon signal calculation (Figs. 4
and 5).
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where P is the symbol of the principal value.
In the general case, the value of A, (®,7) is repre-
sented by the 2-D integral:

A, (07) =[] do'de"F, ()F, (0"F, (0- o, - o)
X [Fy (0 - @, ,0) + iz X, (0-0,,D]  (39)

that does notreduce to the product of the one-dimensional
integrals (according to eq 35). The reason is that the
frequencies w,  ineq 39 are functions of both @' and ®":

0 (1) = (0, + 0) + (0 -0, -0") (1)

0,0 = (0, - 0'-0)+(@-0, -0"+n) ST (40)

The physical reason for such a dependence is given as
follows.

Let us return to Fig. 2a. The situation shown in this
figure is characteristic also for the 2-D case; however, it
is true only for the intersections of hypersurfaces by the
vertical plane passing through the coordinate Qg (Fig.
2b). Therefore, any distribution shown in Fig. 2a will be
accompanied by the equilibrium distribution with respect
to the intramolecular coordinate Q, .

Let us consider only the processes corresponding to
A (w,7) (eq 39). The pump pulses act along the transition
o between the “plane” potentials U (Q,,0) and U,*(Q,,)
(Fig. 2b), bearing the spike of the distribution on the
bottom of the Franck—-Condon potential U,"(Q,,) (point
“A”) due to the instantaneous intramolecular relaxation.
If the delay time 7T of the arrival of probe pulse to the
excited sample is shorter than the relaxation time with
respect to the coordinate Q, then the probe pulse will act
also between the potentials U,"(Q,,) and U (Q,,,0) and,
correspondingly the spectra F, (@) and F, (0") in eq 39
will be strongly correlated. For large delays 7, the spike
will relax to the equilibrium state (point “B”). Therefore,
the pump pulse will act in the range of the pair of
potentials: U,(Q,,d,) and U, (Q,,0) (the transition ).
The corresponding spectra F, (0') and F, (®") will not
correlate. In this case the double integration reduces to the
product of 1-D integrals, i.e., to the product of the
corresponding equilibrium spectra.

Figure 4 illustrates the time behavior of the RTGS
signal J (1) in the Condon approximation that was calcu-
lated by the equation

J (1) ~ exp(-21/T)A(w,T)

obtained from eqs 27-29. The shape of “intramolecular”
spectrum F,(w") is modelled by a “smoothed” usual
dependence for one optically-active intramolecular vi-
bration of frequency @ F,,(®") ~ §* T (x+ 1) where I'(x
+ 1) is the gamma-function, x= (&' - @, )/o, ®_ = (E; +
(V3'y — E} — (Vi'))/h is the frequency of the purely

(41)
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electronic transition of a molecule in solution. We used
the following values of parameters: (1)‘“(2028)‘”2 =28 =
1.5, w/(20,)'"* = 1.14. The shape of the intramolecular
spectrum F, (') for these parameters is shown in Fig. 3
in the form of the equilibrium spectra F; (0 — w_ ) and
Ef,(wcl — ) when the contribution from the solvent is
absent. I (0—w ) and F; (o, — w) are determined by eqs
35a,b for the substitutions 0, - ®,, ®, =0, F_— S(w
~0,-0)andF,_ — o, -0-0"),5(x)is the 5-function
of Dirac. The equilibrium spectra of the molecule in
solution F5 (0 -, ) and Fg (w,, — 0, — o) are also shown
in Fig. 3.

It follows from eqs 3941 that the signal J (T) depends
on the excitation frequency . We chose here © = w_, +
®_ /2, which approximately corresponds to the experi-
mental situation.® The excitation frequency ® corre-
sponds to the position “c” in Fig. 3.

We used two forms for the correlation function S(1):

S(1) = a, exp(-a,f) + (1 —a,—a,) exp(-a,) + a, exp(-a)
(42a)
and
S(1) = exp(-T'|¢]) [cos Cx + (T/€2)sin Q]

corresponding to a Brownian oscillator.>'81%23!

The first addend in eq 42a for the first correlation
function corresponds to a fast Gaussian component, re-
ported in ref 4. The second one corresponds to the
relatively fast exponential component with an attenua-
tion time of 200400 fs, reported in refs 4 and 8. And, at
last, the third addend corresponds to a slower attenuation
with a decay time of the solvent longitudinal relaxation
7,. It is worth noting that such subdivision to different
contributions to the correlation function is purely formal,
and is used here only to describe mathematically the
correlation function. As a matter of fact, both the short
and the long time components of the correlation function
are manifestations of one physical process. We shall
discuss this issue in more detail below. We showed in Fig.
4 the time dependence of the correlation functions S(t)
used for the calculation of corresponding signals J (T).

One can see that the dependences of S(t) and J (1) are
very similar (but not identical), and that signal J (1)
reflects the fine details of S(t). Thus the RTGS can be
used for the ultrafast study of the solvation dynamics.

The signal time behavior Js('t) for the correlation
function (42a) is close to the experimental one.?

3.1a. The dependence of the signal on excitation
frequency. Let us discuss the dependence of the signal
J (1) on the excitation frequency . It can be seen from eq
41 that the “Condon” sensitivity of the method to the
solute-solvent relaxation is determined by changing the
quantities A, (,7) when the delay is changed from T =
+0 to T — co. A(w,7)|_,, is determined by eq 37. For t=

(42b)
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Fig. 4. Model calculations of the RTGS signal. a: the solvation correlation function consists of the Gaussian and exponential decays
(eq 42a), b: the correlation function corresponds to a Brownian oscillator model for the liquid behavior (eq 42b); For both a and
b, T,=200 fs and the excitation frequency o corresponds to the position ¢ in Fig. 3. For a, (T /t)) =400, a, T2 =7.7016, a1 =
0.5, a1 =0.05,a,=034,a,=0.19.Forb, T)/t = o, [T = 1, Q-7 = 2.83.

o

+0 we obtain from eq 39:
A,0)= [Zdo'F_(0-0, —0)[F(0)+F,()F, (o)
- iF (@)D (-0)+iF, ()P, (—0)] (43)

F(@") . . 5
where @ (0') = % Pfdw”,,ﬁ‘v<~—w’ﬁ,- is the “intramolecular’
spectrum of the refraction index. Thus, A(®,0) is equal to
the sum of the four convolutions of the “solute—solvent”

absorption spectrum F,_(w—w,,) with (1) “intramolecular”

spectrum squared, (2) the product of “intramolecular”
absorption (F, (") and emission spectra (F,,(-"), (3)
the product of the “intramolecular” spectrum and the
spectrum of the refraction index for the absorption
(@, (@), and (4) the same, but the spectrum of the
refraction index corresponds to emission (®, (—®')).
Thus, the time dependence of the value A(w,t) is
determined by the differences between the convolutions
in eq 43 and the corresponding products of convolutions
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(35) and (38) in eq 37.

The dependence of the “Condon” signal J () is repre-
sented in Fig. 5 for different excitation frequencies ®,
which are shown in Fig. 3. We used here an exponential
form for the correlation function 5(¢) = exp(-{l/t)).

It can be seen that the relative amplitude of the solva-
tion component to the total signal intensity J (T) strongly
depends on excitation frequency. The contrast is best for
excitation at the frequency of the purely electronic tran-
sition.

Thus, it is recommended to investigate intermolecular
relaxation by transient four-photon spectroscopy at the
frequencies corresponding to the electronic origin. In
addition, it will be very useful to conduct an experiment
with different excitation frequencies.

At the end of this section we shall briefly discuss the
signal AT(t) in pump-probe spectroscopy (eqs 3 and 30).
AT(7) is determined only by the real part of A(®,7), i.e., it
does not depend on the transient spectra of the refraction
index. The corresponding calculations of the signal AT(T)
we shall adduce elsewhere,

3.2. Non-Condon nonlinear spectroscopy
The non-Condon terms in expression 26 for X, (©,7,)
have the following forms:

B = | | 019 6,08, @). expl(-23 1(Q30)
¥, ()]}
(44)

where m = o, @; 6 1s the Kronecker’s symbol; ¥_ (1: )=
(0, (00, N)(0= (0)) is the correlation function, corre-
spondmg to coordinate Q ;

5,= f 4Q,0,(Q)exp(-i7 Q)

X+ V] + 20V (1) + 8, ,d,v(1 -

( 211:) 45)

0 1.0 3.0
T Tg

Fig. 5. The dependence of the Condon signal J (1) for different

excitation frequencies. The curves a,b,c,d, and e correspond to

the positions a,b,c,d, and e, respectively, in Fig. 3.
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is the Fourier-transformation of the tensor

6,,(Qy) = D}, (Q/2)D}(Qy/2) (46)

It is worth noting that here coordinates Qs, (and, conse-
quently, the M-dimensional vector Q) are geometrical
(Cartesian) ones. One ought not to confuse them with the
generalized solvation coordinate O , used in the previous
section (see Fig. 2) for the discussion of the physical
meaning ofeqs 31 and 39. O is one coordinate and has the
dimensionality of energy. Here index “s” shows only an
intermolecular character of motions. Such a picture cor-
responds, for example, to the solvation description by a
superposition of different oscillators.?

The origin of the second addend in the square brackets
in eq 44 is the first sum in the curly brackets in eq 20. In
particular, for the model’ d = C,/w; . This term describes
the interference of the Franck—Condon and Herzberg—
Teller contributions. Different shifts dsj of the equilib-
rium positions upon electronic excitation can be of differ-
ent signs. This can result in their partial compensation. In
the latter case Bhy” = By and the eq 27 is exact.
Non-Condon terms By (t) do not depend on the exci-
tation frequency o, in contrast to X£ (®,7,).

We shall consider the case of freely- onentating mol-
ecules. In order to calculate (8,3, (1)), we shall
expand the tensor G,,(V) (or 6,,(Q)) by irreducible parts
(i.e., parts that transform only by themselves at any
coordinate transformations):

5,V =83, +83,(V) + 5iu¥) @47
where
8'%) = 3306, =450 (48)
is a scalar,
o) =5 (6,0 +8,)-0%,  (49)
is a symmetrical tensor, and
L) =3 Bu® +8,M) (50)

is an antisymmetrical tensor.
One can show that the following values: 8°(V),

B, = 28530 (51)
and
B.(V.0) = 28508:(H) (52)

are the invariants of the tensor 3,,(V) (i.e., values that are
constants for tensor in any coordinate system). We can
express any orientation average (8,,(V)3u(f) ) by the
tensor invariants 8°, b, and h,:

(B2 8o = 8’ W) + h D) (53)

<6u<u)6.,.,(v»=6"(;1)6°(V)—i5 {9 (@) (54)




BB M= RN + ERAD  (azh) (55

O D) B Mr = 1B — $HED)

All other averages are equal to zero.

Let us consider the RTGS experiment with parallel
polarizations of all beams (axis X). Using eqs 21, 27, 44,
53-56, we obtain

PO (1) =expl-i(a—k r)] fo dny® (@T)IB,(T)+ s B@)

(a#b) (56)

X (UB)E (- TP & -1+ &0 -T-T) £*1 - 1) £0)]

(57)
where
B,,.(w)= f f didy expl-2X. (05 (O))
3" W)°(1)
X (W +v] +2uv ¥ ()] - h (1L V) (58)
hi (@9)

The amplitude of the coherent spike (the second ad-
dend in the square brackets of eq 57) is equal to the
amplitude of the “relaxation” part (first addend) for zero
delays T = 0. Therefore, for short pulses the ratio of the
signal intensity for 1= 0, J(t=0) ~ [IP®*(r,0)Pdt to the
one when pulses do not overlap in time is equal to 4:1.

For the OKE experiment (Y is the registration axis, the
probe pulse polarization is on the X axis, the pump pulse
is at 45° with respect to X and Y) we obtain:

P (cp)=expl-icor-kpl} [ dua o)
xX{% B(t )& (-1 ) & —1)+[B(T)+45B(T,)-1 B(T)]

XEW) E(—T,— 1) EX1 - T,) (59)

The second addend in the curly brackets in eq 59
describes the coherent spike. It is equal to O when the
probe and pump pulses do not overlap in time. At first
glance, the amplitude of the coherent spike and the
“relaxation” part (the first addend) are different. How-
ever, itis correct only for T, #0. Using eqs 48, 51, 52, and
58, one can show that

3 B(0) = B(0) + 3 B(0)—# B0) (60)

i.e., atthe inital time T= 0 (and 7, = 0) both amplitudes are
equal. And for very short pulses we also obtain a ratio
JE(r=0)JE (1> 1)=4:1,as it was for the former case
(tp is the pulse duration). However, in the intermediate
time interval when L is comparable to the relaxation time,
the behavior of the first and the second addends in the
curly brackets of eq 59 are different. Therefore, if the pulse
duration, ¢ ~ fastest relaxation time, the behavior of
J&' (1) and J9*F (1) are different for the time interval
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when the pump and probe pulses overlap in time.

Itisseen from eqs 57 and 59 that the RTGS experiment
and OKE provide information about the different invari-
ants of the tensor 8, : if one measures the invariant b,
connected with the symmetrical part of the tensor 8, (Q)
= D},(Q/2) D5,(Q/2), by the OKE experiment, while one
measures the sum of “scalar” invariant and “symmetri-
cal” one (with the definite coefficient) by the RTGS
experiment.

3.2a. Application. Consider an application of the former
equations. Let us consider a molecule for which the
direction of its dipole moment depends on the excitation
of some (intermolecular) motions. In the “molecular”
frame of references (x'y'z")

D (Q)=D,cos(0 Q) =D, cos(ZJ: OleSj)
Dy.(QS) =D, sin(Ql Q), D,=
We obtain for this model

(61

D% ~
(W) =518, (L) =00,
h (@)=
Do 156 0) 8@-+V) + 8@+ 1) 8@-V) + 2303)]
(62)

where 8(V ) is the &-function of Dirac.
For the case of ultrashort pulses and the pump and
probe pulses are not overlapping in time, we obtain
o (T ~ X2 (w,t)lzi + exp[%Z(Qs,(O))az(l ¥, (T))]\
(63)
Jrros® ~ X (@D 2 + expl-4 2000 (1 - ()] f
(64)

If it is possible to omit changing |x& | (for a definite
choice of o, see Section 3.1a), one can write:

Jog(T=) _ 9 i
T G0) = 16[ +6Xp[—42 012<Qs,(0))]] >4

(65)

TS - ot axcion] >4
(66)

If all o, equal each other (o, = o), we can write:

E(JE?:)(—TT))F ~| & + expl-40(Z(Q3OM)1 - SN e
a
B -2+ expl-4od(SG 0N - S g
a
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where S(7) is the same correlation function, as in Section
3.1 due to assumption of linear dependence between u
and Q (see eq 15).

It can be seen from eqs 63-66 that the relations
between the “constant” and the “time-dependen”t contri-
butions to J, (t) and J, . (7) are different. In J .(T) the
“constant” part is essentially smaller, since J, (T) is
determined by the tensor invariant that is connected with
the symmetrical tensor. But J, . (T) is essentially deter-
mined by the scalar part (60). Therefore, the contribution
of the constant (non-changing in time) part to J, . (7) is
relatively larger.

4. CONCLUSION

In this work we have generalized a non-Markovian theory
of four-photon spectroscopy of electronic transitions in
complex molecules for the tensor non-Condon case. We
have developed a theoretical basis for a new ultrafast
spectroscopical method® based on four-wave mixing for the
study of solvation dynamics of large molecules in solutions.
We have shown that the time dependence of the corre-
sponding signal J(7) is similar (but not identical) to the
time dependence of the solvation correlation function S(t),
which is determined by transient luminescence spectros-
copy,'” and the J(7) signal reflects the fine details of S(t).
The theory is in good agreement with experiment.®

In the second part of the paper (Section 3.2) we devel-
oped the theoretical principles of the new method for the
investigation of Herzberg-Teller effects (mixing different
electronic molecular states due to nuclear motions) on
electronic transitions by transient polarization four-photon
spectroscopy. It has been shown that the cubic polarization
is determined by Condon {2 (®,t) and non-Condon (HT)
BL.,(7) contributions. Since X (m,T) strongly depends on
the excitation frequency, and the non-Condon contribution
BL, does not, it is possible to separate these contributions.
The time dependence of the signals in RTGS and OKE
experiments can be expressed by the invariants of the tensor
that is equal to the product of the transition dipole moments
as functions of nuclear coordinates: 6,(Q) = D}, (Q/2)
D},(Q/2). The signal behavior in RTGS and OKE experi-
ments are different in general and that can be the basis of a
new method of spectroscopy of non-Condon effects in
complex molecules.
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