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We propose a new approach to coherent control of transport via molecular junctions, which bypasses
several of the hurdles to experimental realization of optically manipulated nanoelectronics noted in
the previous literature. The method is based on the application of intrinsic semiconductor contacts
and optical frequencies below the semiconductor bandgap. To explore the coherently controlled elec-
tronic dynamics, we introduce a density matrix formalism that accounts for both the discrete molecular
state and the semiconductor quasicontinua within a single master equation and offers analytically solu-
ble limits for a single and two-site molecular bridge. Our analytical theory predicts a new phenomenon,
referred to as coherent destruction of induced tunnelling, which extends the phenomenon of coherent
destruction of tunnelling frequently discussed in the previous literature. Our results illustrate the poten-
tial of semiconductor contacts in coherent control of photocurrent.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The field of molecular-scale electronics has been rapidly
advancing over the past two decades, both in terms of experimen-
tal and numerical technology and in terms of the discovery of new
physical phenomena and realization of new applications (for re-
cent reviews please see Refs. [1–3]). In particular, the optical re-
sponse of nanoscale molecular junctions has been the topic of
growing experimental and theoretical interest in recent years [4–
15], fueled in part by the rapid advance of the experimental tech-
nology and in part by the premise for long range applications in
optoelectronics. The ultimate goal of controlling electric transport
with coherent light, however, has proven challenging to realize in
the laboratory. One difficulty that has been noted in the previous
literature is substrate-mediated processes. Light shining on a
molecular system in contact with a metal substrate is adsorbed
by the substrate, rather than by a molecular bond or the mole-
cule–surface bond in the vast majority of cases, leading to the exci-
tation of hot carriers. The latter may interact with the molecule
and lead to interesting dynamics, but in the process coherence is
lost. Other competing processes include heating of the electrodes
(one of which often consists of an STM tip) and undesired energy
transfer events.

Ref. [13] proposes the use of semiconducting electrodes and
sub-bandgap frequencies to circumvent undesired substrate-
mediated and heating processes. Here, an ultrafast, nanoscale
molecular switch is introduced, consisting of a conjugated organic
molecule adsorbed onto a semiconducting surface and placed near
a scanning tunneling microscope tip. A low-frequency, polarized
laser field is used to switch the system by orienting the molecule
with the field polarization axis, enabling conductance. Plasmon
enhancement and spatial localization of the incident field by the
metallic tip allow operation at low laser intensities [13]. Semicon-
ducting electrodes have been used in the experimental literature in
the context of a single-quantum-dot photodiode that may be con-
sidered as a quantum dot-based junction [16,17]. In addition to
introducing a new opportunity for coherent control of transport
via junctions, semiconductor-based molecular electronics offer
potentially several other attractive properties. From a chemical
perspective, organic molecules typically form much stronger bonds
with semiconducting surfaces, such as doped silicon, than with
metals. From a technological perspective, the addition of molecular
function to the already established silicon-based technology is
vastly more viable than replacing silicon by metal-based
electronics.

Here we propose and explore theoretically a new approach to
coherent control of electric transport via semiconducting junctions,
which is similar to the concept introduced in Ref. [13] in capitalizing
on the use of sub-bandgap frequencies, but is complementary in
application. Our approach is based on the excitation of dressed
states of the junction Hamiltonian that can be frequency-tuned to
tunnel selectively into either the left or the right contacts, thus
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generating unidirectional current whose temporal characteristics
are controlled by the light pulse.

The next section provides a qualitative discussion of the con-
cept underlying the control mechanism and in Section 3 we devel-
op the theory. In Sections 4 and 5 we address the specific cases of a
single- and a double-site bridge (Sections 4 and 5, respectively),
both of which are analytically soluble, hence providing useful in-
sights. In particular, our analytical theory extends the phenomenon
of coherent destruction of tunneling (CDT) to the light induced
case. The final section concludes with a discussion of the implica-
tions of our analytically soluble models and a brief outline of other
potential avenues for coherent control of transport via semicon-
ductor-based junctions.
Figure 1. Electromagnetic excitation applied to a molecular bridge in state ei leads
to generation of its photonic replica at energies ei � �hx. Tunnelling from the
photonic replica results in a unidirectional photocurrent. CB, conduction band; VB,
valence band.
2. Control concept

We consider a molecular junction consisting of a molecular
moiety that possess a permanent dipole moment D and is in con-
tact with two intrinsically semiconducting electrodes. The use of
SC contacts circumvents energy transfer from the bridge to the
contacts [16], a complicating feature in junctions with metallic
contacts, since, as noted above, sub-bandgap light cannot excite
electron–hole pairs in a semiconductor substrate [13]. Hence, the
main source of relaxation in SC-molecule-SC junctions under the
conditions considered is the charge transfer between the bridge
and the contacts. The interaction of a nonresonant electromagnetic
(EM) field with such systems leads to modulation of their energetic
spectrum by the field frequency x[18–21]. The efficiency of the en-
ergy spectrum modulation depends on the interaction parameter
z ¼ D � E0=ð�hxÞ, where E0 is the amplitude of the electromagnetic
field EðtÞ. The permanent dipole moment of relevant molecules
can reach 10 D and more. The spectral modulation alters the
arrangement of molecular electronic states and may substantially
change the electron and hole transfer rates between the molecular
bridge and the SC contact, due to the strong dependence of these
rates on the position of the molecular level relative to the conduc-
tion band (CB) and valence band (VB). Suppose that initially a sin-
gle molecular level of energy ei is positioned between the
conduction and valence bands of the SC contacts shown in Fig. 1.
No current in such SC-molecule-SC junction is possible even in
the presence of the voltage bias. If, however, an electromagnetic
pulse of appropriate frequency x excites the molecular bridge,
photonic ‘replication’ of state i with energy ei þ �hx can be tuned
to be close to the CB, while the photonic ‘replication’ with energy
ei � �hx is energetically close to the VB. In that situation a current
flows through the junction and its temporal duration is controlled
by the electromagnetic pulse characteristics. The transport rate is
largely controlled by the applied voltage bias, which determines
the barrier width (the asymmetric case, where the molecular level
is remote from the gap center, and/or several levels contribute to
the transport, is addressed below). This control enables us to real-
ize coherent excitation of a molecular bridge while circumventing
competing processes. The control concept introduced here is thus
akin to the problem of photon assisted transfer, a theory of which
in nanojunctions with metallic contacts was developed and applied
in Refs. [3,22]. In these works a time dependent level shift in a mol-
ecule bridging two metal electrodes arises from the coupling to an
oscillating dipole field (see below). For a single site bridge this cou-
pling may be described by a permanent dipole moment [8]. The
above qualitative discussion is quantified in the next section.
3. Theory

In this section we develop and discuss our theoretical frame-
work. We begin in Section 3.1 with a description of the model
Hamiltonian and proceed (Section 3.2) with the density matrix for-
mulation. Sections 4 and 5 specialize our theory to the cases of a
single- and a double-site molecular bridge.
3.1. Model

The complete Hamiltonian describing a molecular bridge inter-
acting with two semiconductor electrodes and subject to a low fre-
quency optical pulse is written as,

Ĥ ¼ Ĥ0
wire þ ĤSC þ D̂þ Ŵ þ V̂ ð1Þ

where the zero order wire Hamiltonian,

Ĥ0
wire ¼

XN

n¼1

enĉynĉn ð2Þ

is described as a tight-binding model composed of N sites, where
each site represents available orbitals (e.g., the HOMO and/or the
LUMO), en denotes the electron energy on site n and ĉyn (ĉn) are cre-
ation (annihilation) operators for electrons in site n. The Hamilto-
nian of the intrinsic semiconductor leads is given as,

ĤSC ¼
X

n¼1;N

X
k2Kn

ðeckĉyckĉck þ evkĉyvkĉvkÞ ð3Þ

where c (v) denote the conduction (valence) bands and ecðvÞk are the
corresponding quasicontinuum electron energies. In what follows
we will omit the band indices c and v when not essential, so as to
simplify the notation. We denote by K1 the lead in contact with
bridge site n ¼ 1 and by KN the lead in contact with site n ¼ N.
The operator D̂ in Eq. (1) accounts for electron transfer interactions
between nearest sites within the Huckel model,

D̂ ¼ �
XN�1

n¼1

Dðĉynþ1ĉn þ ĉynĉnþ1Þ; ð4Þ

and ŴðtÞ ¼ �D � EðtÞ describes the interaction of the bridge sites
with an external electromagnetic field EðtÞ, where the dipole oper-
ator has only diagonal elements,

Dmm ¼ D½dN1 þ ðN þ 1� 2mÞ=2�: ð5Þ

Here D is given by the product of electron charge by the distance
between the neighboring sites [3,22], and dN1 is the Kronecker delta.
Finally,
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V̂ ¼
X

n¼1;N;k2Kn

ðVnckĉyckĉn þ VnvkĉyvkĉnÞ þ h:c:; ð6Þ

where h:c. denotes Hermitian conjugate. Eq. (6) describes electron
transfer between the molecular bridge and the leads, thus giving
rise to net current via the biased junction.

We consider electronic transport through the molecular wire,
where the semiconductor leads Kn;n ¼ 1;N are taken to be each
in its own equilibrium characterized by its temperature T (here
taken equal for the two leads) and electronic electrochemical
potentials lKnc and lKnv for the conduction and valence bands,
respectively. Therefore, the lead electrons are described by the
equilibrium Fermi functions

fKn ðecðvÞkÞ ¼ ½expððecðvÞk � lKncðvÞÞ
.

kBTÞ þ 1��1
; ð7Þ

where kB is Boltzmann’s constant. Consequently, the expectation
values for the lead operators are simplified through the relation
hĉycðvÞkĉcðvÞk0 i ¼ fKn ðecðvÞkÞdkk0 .

3.2. Equations of motion

Our analysis is based on the generalized master equation for the
reduced density matrix of the molecular subsystem treating V̂ as a
perturbation [3,23,24]. Briefly, one starts with the equation of
motion for the total density operator

dq̂
dt
¼ � i

�h
½Ĥ0 þ V̂ ; q̂�; ð8Þ

where

Ĥ0 ¼ ĤSC þ Ĥ0
wire þ D̂þ Ŵ ð9Þ

and the interactions constituting Ĥ0 are defined in the previous sub-
section. Transforming to the interaction representation through the
unitary transformation,

B̂int ! Ŝ�1B̂Ŝ; ð10Þ

where the unitary operator Ŝ satisfies the equations

i�h
dŜ
dt
¼ Ĥ0Ŝ; Ŝ�1ðt ¼ 0Þ ¼ I; ð11Þ

we derive an evolution equation for the reduced density matrix
describing the discrete manifold by introducing projectors onto
the left (L) and right (R) quasicontinua, defined through,
PKqðtÞ ¼ qK TrKqðtÞ;K ¼ L;R. As illustrated in Ref. [25], the resulting
equation of motion satisfied by the reduced density matrix
rðtÞ ¼ TrRTrLqðtÞ is given to second order with respect to V̂ as,

drintðtÞ
dt

¼ � 1

�h2 TrL;R

Z t

0
ds½V̂ intðtÞ; ½V̂ intðt � sÞ;rintðt � sÞqK �� ð12Þ

where TrL;R ¼ TrLTrR. Reexpressing the coupling Hamiltonians V̂
(Eq. (6)) as

V̂ ¼
X

n¼1;N

ðĉnK
y
n þ ĉynKnÞ ð13Þ

where Kn ¼
P

k2Kn
Vnkĉk, we have V̂ intðtÞ ¼ ĉþint

n ðtÞKint
n ðtÞ þ ĉint

n ðtÞ
Kyint

n ðtÞ with Kint
n ðtÞ ¼

P
k2Kn

Vnkĉk expð� i
�h ektÞ.

With Eq. (13), the RHS of Eq. (12) can be expressed in terms of
reservoir correlation functions that reflect the reservoir equilib-
rium properties as well as the nature of its interaction with the
wire. For example,

TrL;R½Kint
n ðtÞK

yint
n ðt � sÞqK � ¼

X
k2Kn

jVknj2½1� fKn ðekÞ� expð� i
�h
eksÞ ð14Þ

As a result, we get from Eq. (12)
drintðtÞ
dt

¼ 1

�h2

X
nk2Kn

jVknj2
Z t

0
dsf�fĉint

n ðtÞĉþint
n ðt�sÞfKn ðekÞexpðixksÞ

þ ĉþint
n ðtÞĉint

n ðt�sÞ½1� fKn ðekÞ��expð�ixksÞgrintðt�sÞ

þ ĉint
n ðtÞrintðt�sÞĉþint

n ðt�sÞ½1� fKn ðekÞ�expðixksÞ

þ ĉþint
n ðtÞrintðt�sÞĉint

n ðt�sÞfKn ðekÞexpð�ixksÞ

þ ĉþint
n ðt�sÞrintðt�sÞĉint

n ðtÞfKn ðekÞexpðixksÞ

þ ĉint
n ðt�sÞrintðt�sÞĉþint

n ðtÞ½1� fKn ðekÞ�expð�ixksÞ

�rintðt�sÞfĉint
n ðt�sÞĉþint

n ðtÞfKnðekÞexpð�ixksÞ

þ ĉþint
n ðt�sÞĉint

n ðtÞ½1� fKn ðekÞ�expðixksÞgg; ð15Þ

where xk ¼ ek=�h.
Eq. (15) is clearly non-Markovian, memory effects being intro-

duced via the dependence of the rint on the RHS on s. We proceed
by expanding the interaction picture creation and annihilation
operators (ĉyint

n ðtÞ and ĉint
n ðtÞ, respectively) contained in V̂ intðtÞ, in a

Fourier series as [20],

ĉyint
n ðtÞ ¼

X
r

ĉyrn expðixrtÞ and ĉint
n ðtÞ ¼

X
q

ĉq
nexpð�ixqtÞ ð16Þ

and invoking the Markovian approximation by neglecting the s-
dependence of rintðt � sÞ in Eq. (15). Taking the t !1 limit for
the upper limit of integration with respect to s, we can then approx-
imate Eq. (15) as,

drintðtÞ
dt

þ i
X
nrq

½drq
n ĉþr

n ĉq
n;r

intðtÞ��

¼
X
nrq

crq
n f�½ð½ĉq

n; ĉ
þr
n ��fKnð�hxrÞ þ ĉþr

n ĉq
nÞ;rintðtÞ�þ

þ 2ĉq
nr

intðtÞĉþr
n ½1� fKn ð�hxrÞ� þ 2ĉþr

n rintðtÞĉq
nfKn ð�hxrÞg; ð17Þ

where ½Â; B̂�� denotes the commutator of Â and B̂, and ½Â; B̂�þ their
anticommutator, ½Â; B̂�� ¼ ÂB̂� B̂Â,

drq
n ¼ �

1

�h2

X
k

jVknj2 exp½iðxr �xqÞt�nðxr �xqÞ
P

xk �xr
ð18Þ

P denotes the principal value, and

crq
n ¼

p
�h2

X
k

jVknj2 exp½iðxr �xqÞt�nðxr �xqÞdðxk �xrÞ ð19Þ

is the spectral function. The Fourier components index rðqÞ in Eqs.
(16)–(19) will be seen shortly to have the physical significance of
the photonic replication of order rðqÞ. The spectral functions of Eq.
(19) with r ¼ q will thus take the role of r-specific decay rates due
to coupling of the rth dressed state with the Kn quasi-continuum.
The frequency dependence of crr

n may be neglected provided that
crr

n is small relative to the bath correlation frequency xc – the
range over which its spectral density essentially changes. In
Eqs. (18) and (19) we retained only the terms giving the domi-
nant contributions, for which xr �xq

�� ��� xc . This was done by
introducing a switching function nðxr �xqÞ defined as
nðxr �xqÞ ¼ 0 for xr �xq

�� ��Jxc , and nðxr �xqÞ ¼ 1 for
xr �xq

�� ��� xc . In the latter case crq
n might depend on time �

exp½iðxr �xqÞt� if xr – xq.
A back transformation to the Schrodinger representation via the

unitary transformation

B̂! ŜB̂int Ŝ�1; ð20Þ

yields
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dr
dt
þ i

�h
Ĥ0 þ �h

X
nrq

drq
n Ĉyrn Ĉq

n;r
" #

�

¼
X
nrq

crq
n f�½ð½Ĉq

n; Ĉ
yr
n ��fKn ð�hxrÞ

þ Ĉyrn Ĉq
nÞ;r�þ þ 2Ĉq

nrĈyrn þ 2ðĈyrn rĈq
n � Ĉq

nrĈyrn ÞfKn ð�hxrÞg; ð21Þ

where,

Ĉq
n ¼ Ŝĉq

nŜ�1; Ĉyrn ¼ Ŝĉþr
n Ŝ�1: ð22Þ

Eq. (21) will be used below to calculate the reduced density matrix
of the molecular bridge and the corresponding currents.

4. Single site molecular bridge

In this section we specialize the theory developed in the previ-
ous section to the simplest case scenario of a single site bridge. This
simple case has the advantageous feature of allowing analytical
expressions for the time evolution of the reduced density matrix
and for the electron and hole currents, which are shown below
to provide useful insights. The analytical theory is presented in
Section 4.2 for the symmetric case depicted in Figure 1, where
the molecular energy level ei is energetically close to the center
of the band gap and the dressed energies ei þ �hx and ei � �hx are
close to the conduction and valence bands, respectively. In Sec-
tion 4.4 we generalize the discussion to the case of an asymmetric
junction, where, in the extreme case, only a single photonic repli-
cation (with energy ei þ �hx or ei � �hx) contributes to the current,
and illustrate that the conclusions derived for the symmetric case
are not modified. In Section 4.3 we illustrate a new and fundamen-
tally interesting phenomenon, namely zeros of the light-induced
currents as a function of the interaction strength, which are remi-
niscent of the phenomenon of coherent destruction of tunneling
[3,8,26–30], and which we term coherent destruction of induced
tunneling.

Solving Eqs. (11) in the limit of a single site bridge, one finds for
the S-matrix elements

Sii ¼ ðS�1
ii Þ

	 ¼ exp½�ixit þ izi sinðxtÞ� ð23Þ

where xi ¼ ei=�h, zi ¼ Dii � E0=ð�hxÞ. The right-hand side of Eq. (23)
can be expanded in terms of the Bessel functions JsðziÞ as [31]

exp½�ixit þ izi sinðxtÞ� ¼
Xs¼1

s¼�1
JsðziÞ exp½iðsx�xiÞt� ð24Þ

This expansion is readily extended to the case of excitation of the
molecular bridge by pulsed, rather than continuous wave (CW)
light, EðtÞ ¼ E0ðtÞ cos xt (whose pulse duration is long with respect
to the optical cycle [21]). In that case the interaction parameter,
ziðtÞ ¼ Dii � E0ðtÞ=ð�hxÞ, acquires a time-dependence.

Using the equation of motion (21), one obtains relations for the
expectation values of the molecular bridge operators

Pi0 i ¼ hĉ
y
i ĉi0 i 
 Trðĉyi ĉi0rÞ ¼ P	ii0 ð25Þ

that are binary in the creation and annihilation operators for elec-
trons in the molecular states. The time evolution of the molecular
bridge population Pii obtained with Eqs. (21)–(24), reduces under
the conditions of Figure 1 to,

dPii

dt
¼
X

n

½2ð1� PiiÞCvKn ;i � 2PiiCcKn ;i� ð26Þ

where

CvKn ;i ¼
X1
r¼1

J2
r ðziÞcrr

vKn ;i;CcKn ;i ¼
X�1

r¼�1
J2

r ðziÞcrr
cKn ;i; ð27Þ

and
crr
c;vKn ;i ¼

p
�h2

X
k

jVc;vkij2dðxk �xi þ rxÞ ð28Þ

are the spectral functions of Eq. (19), which take the significance of
replication-specific decay rates due to coupling of the bridge site
with the conduction (c) and the valence (v) band of the electrode.
For the specific model depicted in Figure 1, c11

vL;i ¼ c�1;�1
cR;i ¼ 0, and,

given that only a single site is included (N ¼ 1), we replaced the
Kn;n ¼ 1;N notation by K1 ¼ L for the left electrode and KN ¼ R
for the right electrode of the single site junction.

Eq. (27) describes the rate of electron transfer between the
molecular state i and the conduction (valence) bands (CcðvÞLðRÞ;i) as
a sum over contributions of electron transfer rates crr

cðvÞRðLÞ;i, in
which the underlying potential coupling constants VcðvÞki are
evaluated in the absence of the laser field but the energy-conserv-
ing d-function tunes the electron energy to the r-photonic replica-
tion, that is, to the side-band energy �hxi � jrj�hx shifted by integer
multiples of the photon quantum. The dependence on the interac-
tion strength, zi ¼ Dii � E0=ð�hxÞ, is solely contained in the squared
Bessel functions in Eq. (27), which serve as weight functions for
the crr

cðvÞRðLÞ;i components of CcðvÞLðRÞ;i. Note that the partial electron

transfer rates J2
r ðziÞcrr

cLðRÞ;i and J2
r ðziÞcrr

vLðRÞ;i contain contributions from
negative and positive r-values, respectively. Thus, the photon
absorption (r < 0) and emission (r > 0) processes can be viewed
as creating effective molecular states at energies �hxi þ r�hx with
probabilities J2

r ðziÞ. These probabilities decay rapidly with r when
zij j < 1.

In the pulsed regime, the Markovian Eq. (26) is valid for pulses
longer than reciprocal correlation frequency 1=xc . For shorter
pulses the non-Markovian Eq. (12) has to be used.

4.1. Unidirectional currents and transferred charge

The electronic current IL;R is given by the rate at which the num-
ber of electrons changes in lead L;R [4,24,32]

IK ¼ e
d
dt

X
k2LðRÞ
hn̂ki ¼

ie
�h

X
k2LðRÞ
h½Ĥ; n̂k�i

¼ ie
�h

X
k2LðRÞ

Trð½Ĥ0 þ V̂ ; n̂k�q̂Þ; ð29Þ

where n̂k ¼
P

p¼c;v ĉypkĉpk. Evaluating the commutator in Eq. (29), we
find,

ILðRÞ ¼
ie
�h

X
k2LðRÞ
h½Ĥ; n̂k�i ¼

2e
�h

X
k2LðRÞ

X
p¼c;v

ImðVipkhĉypkĉiiÞ: ð30Þ

Using the Heisenberg equations of motion, one obtains an equation
of motion for the expectation value of operator ĉypkĉi (see also Eq.
(12) of Ref. [4]) reading,

d
dt
hĉypkĉii ¼ i xk � ðxi þ

1
�h

WiiÞ
� �

hĉypkĉii þ
i
�h

V	ipk½Pii � fLðRÞðekÞ�; ð31Þ

where k 2 LðRÞ;Wii is the matrix element of the interaction of the
bridge site with the external electromagnetic field (see below Eq.
(4)). Formally integrating the last equation, using expansion (24),
invoking the Markovian approximation, and substituting the result
into the right-hand side of Eq. (30), we obtain

IK ¼ �2e½ð1� PiiÞCvK;i � PiiCcK;i�: ð32Þ

An observable quantity in pulsed experiments is the charge trans-
ferred during an electromagnetic pulse, QLðRÞ ¼

R1
0 ILðRÞðtÞdt. Using

Eq. (32), Eq. (26) can be written as

dPii

dt
¼ �IR=e� IL=e ð33Þ



Figure 2. The hole and electron currents, �IRðtÞ (1) and ILðtÞ (2), respectively, and
the rate dPii=dt ¼ �IRðtÞ � ILðtÞ (3) of Eq. (33) versus time for CR ¼ CL 
 C and
zij j � 1.
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The right-hand side of Eq. (26) is proportional to the sum of the cur-
rents, IRðtÞ and ILðtÞ, due to the coupling of state i with the right and
left electrodes, respectively.

Integrating Eq. (33) from t ¼ 0 to t ¼ 1, we get,

e½Piið1Þ � Piið0Þ� ¼ �Q R � Q L ð34Þ

Eq. (34) expresses the charge conservation – the transferred
charges value �QR and QL coincide only for Piið1Þ ¼ Piið0Þ. This
is achieved when the pulse is long with respect to the tunneling
lifetime (see below). It is readily seen that current in the SC-mol-
ecule-SC junction exists only in the presence of external EM
field (z – 0) – in the absence of the laser pulse both IR and IL

vanish.

4.2. An analytically soluble model

The first order differential Eq. (26) can be readily integrated,
giving, for Piið0Þ ¼ 0 and excitation by a rectangular pulse of dura-
tion tp,

IKn ¼
2e

Cvi þ Cci
fðCcKn ;iCvKn0 ;i � CvKn ;iCcKn0 ;iÞ

� ðCcKn ;i þ CvKn ;iÞCvi exp½�2ðCvi þ CciÞt�g ð35Þ

where n – n0;Cvi ¼
P

Kn
CvKn ;i and Cci ¼

P
Kn

CcKn ;i are the rates of
electron transfer between the molecular state i and the valence
and conduction bands, respectively, of the two leads, and we used
Eq. (32). In the steady-state limit, Eq. (35) reduces to,

IL ¼ 2e
CcL;iCvR;i � CvL;iCcR;i

Cvi þ Cci
¼ �IR; ð36Þ

i.e., as expected, under steady state conditions the currents are
equal.

In the weak field limit, where the field-matter interaction
parameter is small with respect to unity, zij j � 1, we obtain from
Eq. (35)

IRðtÞ ¼
�2eCR

CR þ CL
fCL þ CR exp½�2ðCR þ CLÞt�g; ð37Þ

and

ILðtÞ ¼
2eCLCR

CR þ CL
f1� exp½�2ðCR þ CLÞt�g; ð38Þ

where the dependence on the bias voltage and the laser parameters
is implicit in the CR ¼ J2

1ðziÞc11
vR;i and CL ¼ J2

1ðziÞc�1;�1
cL;i . Eqs. (37) and

(38) illustrate that the hole current, �IR, starts out at a finite value,
2eCR, and decays exponentially according to the tunneling lifetime
½2ðCL þ CRÞ��1, which serves as a natural system time-scale, building
up negative charge on the bridge. The electron current, IL, starts at
zero and grows at the same rate, the tunneling rate, as negative
charge builds up on the bridge. This behavior is summarized in Fig-
ure 2, where �IRðtÞ and ILðtÞ are plotted versus time along with
dPii=dt ¼ �IR=e� IL=e, Eq. (33).

In the steady-state regime both currents converge to,

IL ¼ �IR ¼ 2e
CLCR

CL þ CR
; ð39Þ

a specific case of Eq. (36) for zij j � 1. Eq. (39) asserts that at steady
state the rates of negative charge transported onto and out of the
bridge via the valence and conduction bands, respectively, are
equal.

At short time dPii=dt ¼ �IR=e� IL=e, Eq. (33), is positive (see Fig-
ure 2), i.e., the charge density on the bride grows at a constant rate
determined by CR. As electron current develops, the rate of change
of Pii drops, until it stabilizes on zero at steady state, where the
charge density on the bridge remains constant. For pulses short
with respect to the tunneling time, however, steady state is never
established and Pii maintains its time dependence throughout.

According to the charge conservation relation, Eq. (34), the
transferred charges �QR and Q L coincide only for Piið1Þ ¼ Piið0Þ
when the pulse is long with respect to the tunneling lifetime,
tp � ½2ðCL þ CRÞ��1. Eqs. (37), (38) illustrate also the possibility of
generating unidirectional current at times short with respect to
½2ðCL þ CRÞ��1.

To develop general insight into the magnitude of the electric
field that would be needed to generate significant currents, we
consider a pulsed laser experiment as described in Ref. [17], where
one observes the time-integrated current, Iint ¼ Qf , equal to the
product of the charge transferred during an electromagnetic pulse,
Q (’ eCtp), and the laser pulse repetition frequency, f (’ 100 MHz).
A measurable value of the time-integrated current is about
Iint � 1� 10pA[17]. In such a situation, we evaluate the necessary
field strength of the laser pulse to be � 106V=cm for
zij j ¼ 0:3; c11

vR;i ¼ c�1;�1
cL;i ¼ 10ps�1, and tp ¼ 1ps [17].
4.3. Coherent destruction of induced tunneling (CDIT)

We proceed to consider the steady-state current, Eq. (36), when
the interaction parameter zij jis not small with respect to unity. For
broad conduction and valence bands and jrj > 1, it may be ex-
pected that, due to symmetry, the spectral functions of the r-th or-
der replication would be equal for the left and right contacts, i.e.,

crr
cL;i ¼ crr

cR;i and crr
vR;i ¼ crr

vL;i ð40Þ

In this case Eq. (36) takes the form

IL ¼ �IR ¼ 2eJ2
1ðziÞ

c�1;�1
cL;i ðCvR;i � c11

vR;iÞ þ c11
vR;iCcL;i

Cvi þ Cci
: ð41Þ

Eq. (41) shows that the steady-state current is proportional to the
square of the first-order Bessel function J2

1ðziÞ. This implies that
the current vanishes identically at zeros of J1ðziÞ (i.e., for
zi ¼ 0;3:8;7; . . .). The phenomenon observed in Eq. (41) is referred
to in what follows as coherent destruction of induced tunneling
(CDIT), as it extends the extensively studied problem of coherent
destruction of tunneling (CDT), related to zeros of J0ðziÞ[3,8,26–30]
to the case of light-induced tunneling. In the present case the effect
could be formulated as dressing of the laser-free coupling of the
molecular bridge with semiconductor leads, VcðvÞki, by the light field
to make the effective coupling,

VcðvÞki ! ðVcðvÞkiÞeff ¼ J�1ðziÞVcðvÞki

for the electron transfer rates c�1;�1
cL;i and c11

vR;i (see Eq. (41)). These
effective tunneling matrix elements ðVcðvÞkiÞeff are suppressed at
zeros of J�1ðziÞ.



Figure 3. Photonic replica for an asymmetric location of the molecular energy level.
Tunnelling from the upper photonic replication at ei þ �hx results in a unidirectional
photocurrent.

Figure 4. Two-site molecular bridge. The sites are coupled to each other due to
intersite interaction D, and posses permanent dipole moments D11 ¼ �D22 
 D=2.
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4.4. Asymmetric location of the molecular energy level

In this subsection we briefly generalize the discussion of the
previous subsections to the case where the energetic location of
the molecular orbital i is asymmetric with respect to the conduc-
tance and valence bands of the SC leads. We illustrate that the re-
sults obtained via consideration of the idealized symmetric case
remain valid. For concreteness, we assume that the higher first
photonic replication is coupled only with the conductance band
of the left lead whereas the lower first photonic replication is cou-
pled with the valence bands of both leads, Figure 3.

In this case, steady-state current is determined by the same
expressions, Eqs. (36) and (40), the sole difference being that
now c11

vL;i – 0 and we assume that c11
vR;i ¼ c11

vL;i, which is realized, as
discussed above, for broad valence and conduction bands. In this
case Eq. (36) takes the form,

IL ¼ �IR ¼ 2eJ2
1ðziÞ

c�1;�1
cL;i CvR;i

Cvi þ Cci
; ð42Þ

which gives for zij j � 1,

IL ¼ �IR ¼ 2e
CLCR

2CR þ CL
ð43Þ

since c11
vR;i ¼ c11

vL;i and CR ¼ J2
1ðziÞc11

vR;i.

Eqs. (42) and (43) show that the photoinduced, unidirectional
current survives for an asymmetric position of a molecular orbital
with respect to the conduction and valence bands of the SC leads,
thus illustrating the robustness of the proposed method. The value
of the current, however, is somewhat smaller than that in the sym-
metric case (see Eqs. (39) and (41)). Eq. (42) shows also that the ef-
fect of CDIT likewise persists in the asymmetric case.

5. A two-site molecular bridge

In this section we consider the case of a two-site molecular
bridge in contact with SC leads. Specifically, we envision two
molecular sites of energies e1 and e2 (Figure 4) that are excited
by EM field EðtÞ ¼ E0 cosðxtÞ tuned to a sub-bandgap frequency
x, such that the dressed energies e1;2 þ �hx and e1;2 � �hx are close
to the conduction and valence bands, respectively. The sites are
coupled to each other due to the intersite interaction D of Eq.
(4), and interact with the EM field due to site permanent dipole
moments D11 ¼ �D22 
 D=2, Eq. (5), [3,8,28,30].
In the limit of a small energy gap E2 � E1j j=�h and weak coupling
D=�h,

�hx� Dj j; E2 � E1j j; ð44Þ
the operator Ŝ, Eq. (11), can be conveniently represented as a prod-
uct of two operators

Ŝ ¼ Ŝ0Ŝ00 ð45Þ

where Ŝ0 and Ŝ00 obey the equations [19]

i�h
dŜ0

dt
¼ ðĤ0

wire þWÞŜ0; ð46Þ

i�h
dŜ00

dt
¼ ðŜ0�1D̂Ŝ0ÞŜ00: ð47Þ

Eq. (45) partitions the trasformation operator Ŝ into a fast and a
slow component, Ŝ0 and Ŝ00, respectively, where the quasi-static evo-
lution of the slow component follows from the condition (44). The
time evolution of the rapid component, Eq. (46), is given by Eq.
(23) above. Assuming that Dj j and E2 � E1j j are smaller than the bath
correlation frequency xc , the characteristic time of change of the
slow component, Ŝ00, is larger than the bath correlation time x�1

c ,
and its time-dependence does not influence the relaxation parameters.
Under these assumptions one can thus replace the expansion of the
interaction picture operators ĉþint

n ðtÞ ¼ Ŝ00�1ðtÞŜ0�1ðtÞĉþn Ŝ0ðtÞŜ00ðtÞ and
ĉint

n ðtÞ ¼ Ŝ00�1ðtÞŜ0�1ðtÞĉnŜ0ðtÞŜ00ðtÞ in a Fourier series, Eq. (16), by the
simplified expansion,

Ŝ0�1ðtÞĉþn Ŝ0ðtÞ ¼
X

r

ĉ0þr
n expðixrtÞ

¼ ĉyn
X1

r¼�1
JrðznÞ exp½iðxn � rxÞt�;

Ŝ0�1ðtÞĉnŜ0ðtÞ ¼
X

q

ĉ0qn expð�ixqtÞ

¼ ĉn

X1
q¼�1

JqðznÞ exp½�iðxn � qxÞt� ð48Þ

defined in terms of only the rapidly changing operator Ŝ0ðtÞ. As
above, site n is coupled with electrode Kn. In writing Eqs. (48) we
used Eqs. (23) and (24). Substituting expansions (48) into Eq. (15),
invoking the Markovian approximation, and transforming back to
the Schrodinger representation via the unitary transformation, Eq.
(20), we finally obtain,

dr
dt
þ i

�h
Ĥ0 þ �h

X
nr

J2
r ðznÞdrr

n ĉynĉn;r
" #

¼ �
X

nr

J2
r ðznÞcrr

n f2f Kn
½�hðxn � rxÞ�rþ ½ĉynĉnrþ rĉynĉn�ð1

� 2f Kn
½�hðxn � rxÞ�Þ � 2ĉnrĉyn½1� fKn ð�hðxn � rxÞÞ�

� 2ĉynrĉnfKn ð�hðxn � rxÞÞg: ð49Þ



B.D. Fainberg, T. Seideman / Chemical Physics Letters 576 (2013) 1–9 7
With the time evolution of rðtÞ determined, we return to the expec-
tation values of the molecular bridge operators, Eq. (25), obtaining
under the conditions of Figure 4 equations of motion for the polar-
ization P12 and the populations Pnn;n ¼ 1;2 that, in turn, determine
the light-induced hole and the electron currents in the two-site
junction. In particular,

dP12

dt
þ ið �x12 �

D � E
�h
ÞP12 þ

i
�h

DðP11 � P22Þ

¼ �P12ðCvL;1 þ CcL;1 þ CvL;2 þ CcL;2Þ ð50Þ

where

�x12 ¼
1
�h
ðE1 � E2Þ þ �h

X
r

J2
r ðz1Þðdrr

1 � drr
2 Þ

" #
ð51Þ

and

dPnn

dt
þ 2

�h
ð�1ÞnDImP12 ¼ 2CvKn ;nð1� PnnÞ � 2CcKn ;nPnn ð52Þ

Similar to Ref. [23], we define the electronic current I for two-sites
case as the rate of change of electron population on the left of the
dashed line in Figure 4,

I ¼ ie
�h

DðP21 � P12Þ ¼
2e
�h

DImP12: ð53Þ

Introducing the transformation

P12 ¼ P
�

12 expf�i½ �x12t � 1
�h

Z t

0
D � Eðt0Þdt0�g; ð54Þ

one obtains in the interaction picture

dP
�

12ðtÞ
dt

þ i
�h

D expfi½ �x12t � 1
�h

Z t

0
D � Eðt0Þdt0�gðP11 � P22Þ

¼ �P
�

12ðCvL;1 þ CcL;1 þ CvL;2 þ CcL;2Þ: ð55Þ

Using next the expansion (24), and isolating the resonance terms,
we finally find,

dP
�

12ðtÞ
dt

þ P
�

12ðCvL;1 þ CcL;1 þ CvL;2 þ CcL;2Þ

¼ i
�h

DJ0ðzÞðP22 � P11Þ expði �x12tÞ ð56Þ

and

P12 ¼ P
�

12J0ðzÞ expð�i �x12tÞ ð57Þ

where

z ¼ D � E0

�hx
ð58Þ
Figure 5. Current IðtÞ versus time for two-site bridge when
�hðCL1 þ CR2Þ ¼ 0:5DJ0ðzÞ. ISS denotes the steady-state value of IðtÞ, Eq. (64).
5.1. An analytically soluble model

The set of first order differential Eqs. (52) and (56) can be read-
ily integrated, giving, for Pnnð0Þ ¼ P12ð0Þ ¼ 0 and excitation by a
rectangular pulse of duration tp,

IðtÞ ¼
eD2J2

0ðzÞJ
2
1ðz2Þc11

vR;2

D2J2
0ðzÞ þ ð�h

2
=4ÞðCL1 þ CR2Þ2

� 1� exp½�ðCL1 þ CR2Þt� cos
2
�h

DJ0ðzÞt
� �� �

; ð59Þ

where

CL1 ¼ CvL;1 þ CcL;1;CR2 ¼ CvR;2 þ CcR;2 ð60Þ

denote the rates of electron transfer between molecular state
j ¼ 1;2 and the corresponding lead, we used Eqs. (53) and (57)
and put �x12 ¼ 0 for simplicity. In deriving Eq. (??), (59) we assumed
that the spectral functions of r-th order for a given band are equal
for the left and right contacts, i.e.,

crr
cL;i ¼ crr

cR;j and crr
vR;i ¼ crr

vL;j ð61Þ

for i – j when jrj > 1, and that (as above)

c11
vR;2 ¼ c�1;�1

cL;1 : ð62Þ

In particular, as discussed before, the former assumption is ex-
pected to hold due to symmetry in the case of broad conduction
and valance bands. When the relations given by Eqs. (61) and (62)
are realized, the rates of electron transfer CL1 and CR2 are equal

CL1 ¼ CR2 ð63Þ

A plot of IðtÞ versus time is shown in Figure 5. One can see that the
current starts at zero and, at short time grows exponentially at a
rate determined by the tunneling lifetime, ðCL1 þ CR2Þ�1. In the long
time limit the current approaches its steady-state value,

ISS ¼
eD2J2

0ðzÞJ
2
1ðz2Þc11

vR;2

D2J2
0ðzÞ þ ð�h

2
=4ÞðCL1 þ CR2Þ2

; ð64Þ

the first term on the right-hand side of Eq. (59). Most interestingly,
at intermediate times IðtÞ oscillates with frequency 2

�h DJ0ðzÞ. The
oscillation decays exponentially according to the tunneling lifetime
ðCL1 þ CR2Þ�1. Eq. (59) illustrates also the possibility of generating
unidirectional current at times short with respect to ðCL1 þ CR2Þ�1.

5.2. Coherent destruction of induced tunneling for the two-site case.

The steady-state current for a two-site molecular bridge, Eq.
(64), is proportional to the square of the product of zero- and
first-order Bessel functions J0ðzÞJ1ðz2Þ of different arguments z and
z2 ¼ �z=2. Consequently, the current vanishes at zeros of both
J0ðzÞ and J1ð�z=2Þ (i.e., for the values of jzj ¼ 0;2:4, 5:52;7:6;
8:65; . . .). Thus, the phenomenon of CDIT for a two-site molecular
bridge differs qualitatively from both CDIT for a single site bridge
and the conventional CDT. In particular, for the 2-site bridge, both
the coupling of the molecular bridge with semiconductor leads
VcðvÞkj and the electron hopping matrix element D are replaced
through the interaction with the light by their effective values,
VcðvÞkj ! ðVcðvÞkjÞeff ¼ J�1ðzjÞVcðvÞkj and D! Deff ¼ J0ðzÞD (see Eq.
(64)). The corresponding effective tunneling matrix elements
ðVc;vkjÞeff and Deff vanish at zeros of J�1ðzjÞ and J0ðzÞ, respectively.

To determine the steady-state current versus z, Eq. (64), one
needs to know z-dependence of CL1 þ CR2, which requires calcula-
tion of the rates crr

c;vKj, Eq. (28), as functions of r, the order of the
photonic replication. To evaluate crr

c;vKj, it is useful to convert the
sum over k in Eq. (28) into an integral over the energy
ec;v ;

P
k ¼

R1
0 deqð3ÞðeÞ, where qð3Þðec;v Þ is the density of states of

the 3D semiconductor. This yields,



Figure 6. Steady-state current for two-site bridge versus z, calculated using Eqs.
(64) and (67) for c22

vR;2 þ c�2;�2
cR;2 ¼ 10c11

vR;2 and �hc11
vR;2=jDj ¼0:054.
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crr
c;vKj ;j

¼ p
�h

Z 1

0
dec;vqð3Þðec;vÞjVc;v jðec;vÞj2dðec;v � �hxj þ r�hxÞ

¼ p
�h
jVc;v jð�hxj � r�hxÞj2qð3Þð�hxj � r�hxÞ ð65Þ

Bearing in mind that qð3Þðec;vÞ �
ffiffiffiffiffiffiffiec;v
p

[33], and neglecting the en-
ergy dependence of the tunneling matrix element Vc;vjðec;vÞ, one ob-
tains for jrjP 2

crr
c;vKj ;j

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrj � 1

p
c�2;�2

c;vKj ;j
; ð66Þ

with which

CR2 ¼ CL1 ¼ J2
1ðz=2Þc11

vR;2 þ ðc22
vR;2 þ c�2;�2

cR;2 Þ
X1
r¼2

J2
r ðz=2Þ

ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

; ð67Þ

where we used Eqs. (27), (61), (62) and (63). A plot of ISS versus z is
provided in Figure 6, illustrating that the steady-state current for
the two-site bridge vanishes at both the zeros of the current corre-
sponding to CDT and the zeros of the induced current for a single
site bridge. We note also the qualitative difference between the cur-
rents for the single- and the double-site bridges, originating from
the differences of the underlying electronic dynamics.

6. Conclusions

In the previous sections, we proposed a viable approach to
coherent control of electric transport via molecular junctions and
developed a theoretical framework to explore the method. Our ap-
proach makes use of semiconducting electrodes and sub-bandgap
frequencies to circumvent substrate-mediated processes and com-
peting energy transfer events. It relies on a simple and general con-
cept, namely the controllable photonic replication of molecular
levels through interaction of the molecular permanent dipole vec-
tor with an electromagnetic field. By exploring simple, analytically
soluble limits for a single and two-site molecular bridge, we
showed that, acting in conjunction with the bias voltage, the elec-
tromagnetic field induces unidirectional current in the junction,
whose rate is determined primarily by the bias voltage while its
temporal characteristics are controlled by the laser pulse. Our re-
sults show that photoinduced, unidirectional current is obtained
for both a symmetric and an asymmetric position of a molecular
orbital with respect to the CB and VB of the SC leads, giving evi-
dence to the generality and the robustness of the proposed ap-
proach. We also predicted the phenomenon of coherent
destruction of induced tunneling (CDIT), which extends the previ-
ously observed effect of coherent destruction of tunnelling (CDT).
CDIT for a two-site bridge differs qualitatively from both CDT
and from CDIT in a single site bridge, reflecting rather different
dynamics of the electrons in the molecular wire in these two cases.

It is clear that opportunities for future research that will extend
the simple models presented here are many and intriguing.
Numerical application of the theory developed in Section 3 that
will include multiple sites and account for nonMarkovian effects
would provide general insights into the role of nonMarkovian
physics in light controlled junctions and the extent to which the ef-
fects observed analytically here survive in the realistic many-site
case. Likewise instructive would be an extension of our model to
realistic molecular bridges, e.g., oligophenylene molecules with
varying numbers of phenyl rings. The photoconductance of such
molecular bridges attached between two metallic electrodes and
subject to monochromatic light irradiation was studied in Refs.
[34,35]. Both the exploration of the multiple-site, nonMarkovian
problem and the extension of our method to treat a realistic molec-
ular bridge are the topics of ongoing research in our group.

Other approaches to optical control of transport via junctions,
which similarly take advantage of the band gap of semiconductors
and sub-bandgap frequencies, could be readily envisioned. The ap-
proach introduced in Ref. [13], where the concept of nonadiabatic
alignment is utilized to introduce a nanoscale, ultrafast switch,
could be generalized through application of the recently developed
torsional control approach [36,37]. Here, a circularly- or an ellipti-
cally-polarized, low frequency laser pulse is applied to transiently
force a nonrigid, twisted molecule (as, e.g., a biphenyl derivative)
into coplanarity, with a dramatic effect on the optical as well as
the electronic properties of the system. When a molecule of this
gender is connected to semiconductor electrodes and subjected
to an appropriately polarized, sub-bandgap laser pulse, the result-
ing molecular junction is expected to exhibit a conductance on–off
ratio of ca. one and a half orders of magnitude along with sub-pico-
second conductance on–off time scales. Likewise, the method of
resonant chirped pulse excitation of a molecular optical transition,
previously applied (with several undesired competing effects) to
metal-based molecular junctions, could benefit from the introduc-
tion of SC-based junctions, potentially enabling us to maximize
photoinduced current through a junction due to adiabatic rapid
passage. A theory to model this method for metallic contacts and
a molecular bridge characterized by a strong charge-transfer tran-
sition into the first excited state [38] has been developed in
Refs.[4,5]. The use of SC contacts will enable realization of a coher-
ent version of the method, specifically, the transfer of electron
charge e per optical pulse (see Eq. (61) of Ref. [4] and the corre-
sponding discussion). This opportunity may find application in
the development of single-electron devices with optical gating
based on molecular nanojunctions. These and other avenues of
extending coherent control concepts and tools to the domain of
molecular junctions will be the topic of future research.
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