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Abstract

We developed theoretically and experimentally the principles of a spectroscopical method based on resonance transient
population gratings for a quantitative description of solvation dynamics of large molecules in liquid solutions. The solvation
dynamics of LDS 750 in methanol, 1,2-ethanediol, 1,3-propanediol and 1,4-butanediol have been measured over four time
decades from 100 fs to 1000 ps. The solvation dynamics of LDS 750 in all solvents consists of ultrafast as well as slow components.

1. Introduction

The dynamics of solvation has been extensively
studied [1-5] both experimentally [6-15] and theo-
retically [ 16-25] in the last decade. Most of the exper-
imental effort in solvation dynamics is based on
measurements of emission time-dependent Stokes shift
of probe molecules dissolved in polar solvents. Pico-
second [1,2] and later on subpicosecond [12] time-
resolved fluorescence spectroscopy provided important
information on the microscopic solvation dynamics in
polar liquids. The experimental effort was further sup-
plemented by results of molecular dynamics simula-
tions of model polar liquids [28-32]. In early
experimental and theoretical studies the solvation
dynamics results were related to the solvent orienta-
tional motion. The first results [ 1,2] were described by
the continuum model predicting a uniform exponential
solvation dynamics for Debye solvents with solvation
times given by the longitudinal relaxation time given
by 7= (&./ &) T, Where 7y, is the dielectric relaxation
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time and &g and &, are the static and the high frequency
dielectric constants, respectively. The model implies
that the solvent dynamics is independent of the distance
from the photoexcited probe molecule. Careful exam-
ination of the experimental results has shown that the
solvation dynamics is nonexponential even in nonas-
sociated solvents while in the macroscopic dielectric
relaxation measurements of such solvents a single
exponential relaxation was observed. Rips, Klafter and
Jortner [ 19,20] explained the nonexponential behavior
of solvation dynamics by extending the mean spherical
approximation (MSA) to the dynamic region. Onsager
[21] proposed the *‘inverted snow ball’’ model where
the solvation proceeds from the *‘outside to the inside’’.
Far from the photo-excited probe molecule the solva-
tion time is 7, while in the close vicinity of the probe,
the relaxation is slower and decreases to 7. This pre-
diction has been derived quantitatively by Rips et al.
[20]. Simulations of solvation dynamics [28-32] have
shown that the fastest solvation process occurs at the
first solvation shell and thus in contrast to the *‘inverse
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snowball”” model. Recent ultrafast time-dependent
Stokes shift measurements of LDS 750 in acetonitrile
[12] and nonresonant optical Kerr effect measure-
ments of acetonitrile [ 13] with 50-100 fs laser pulses
have shown that the early stage of solvation dynamics
is ultrashort ~70fs and has a Gaussian shape. The
Gaussian decay found in the ultrafast solvation exper-
iments has been known previously from far-infrared
spectroscopy [33,34] as well as molecular dynamics
simulations and the Anderson—-Kubo stochastic mod-
ulation theory [19,35]. The Gaussian component is
attributed to the inertial solvent motion. The inertial
part accounts for ~80% of the total solvation energy
in acetonitrile. The inertial solvation dynamics of LDS
750 in acetonitrile [ 12] is followed by an exponential
decay with ~ 200 fs decay time.

In this study we propose a spectroscopical method
for the observation of ultrafast solvation dynamics: the
resonance transient population grating spectroscopy
(RTPGS) [36-42]. This method is characterized by
high sensitivity and high time resolution limited by the
laser pulse width.

The RTPGS method is applied to study the solvation
dynamics of LDS 750 in highly viscous associative
protic solvents such as diols. The diols are highly vis-
cous at room temperature but their orientational lon-
gitudinal relaxation times are comparable to the
monoalcohols while the monoalcohol viscosities are
approximately ten times smaller [14].

We shall show theoretically and experimentally that
the RTPGS is rather sensitive to solvation dynamics
and reflects its fine details.

2. Theoretical background

Consider a molecule with two electronic states n= 1
and 2 in a solvent described by the Hamiltonian

2
H0= Z In>[En-1ﬁ'Yn+Wn(Q)]<n| )
n=1

E,>E,, (1)

where E, and 2v, are the energy and inverse lifetime
of state n, W,(Q) is the adiabatic Hamiltonian of a
reservoir (the vibrational subsystems of a molecule and
a solvent interacting with the two-level electron system

under consideration in state n). The molecule is
affected by electromagnetic radiation,

E(r,)=E*(r,) +E~(r, 1)

=1 za: {e, &, (1) expli(k, -r—wt) +cc.]}.
m=1

Here E * ¢~ are the positive (negative) frequency
components of the field strength,  is the field fre-
quency; e,,, £,,(t) and k,, are the polarization vector,
the strength amplitude and wave vector of the mth field.

Since we are interested in intermolecular relaxation
processes, we shall single out the solvent contributions
to E, and W,(Q),

E,=E}+(V1), (2)
Wn(Q) =WnM+WSO+WnS’ (3)

where Wy, is the Hamiltonian governing the nuclear
degrees of freedom of the solvent in the absence of the
solute, W, is the Hamiltonian representing the nuclear
degrees of freedom of a solute molecule, EY is the
energy of state n of the isolated molecule, W,s and
V¢ describe interactions between the solute and the
nuclear and electronic degrees of freedom of the sol-
vent, respectively. It is possible to replace the operators
Ve in the Hamiltonian by their expectation values
(Vi) [43].

In transient four-photon spectroscopy two pump
pulses with wave vectors k, and k, create a light-
induced grating in the sample under investigation with
a wave vector g, =k, —k, (see Fig. 4 below). The
grating effectiveness is measured by the diffraction of
a time-delayed probe pulse k5 with the generation of a
signal with a new wave vector ks=k; + (k, —k,).
The signal intensity Jg can be calculated from the pos-
itive frequency component of the cubic polarization:

Js(r) ~ f dt [P (r, 1) |2, 4)

where 7 is the delay time of the probe pulse k5 with
respect to the pump ones. We shall calculate P® * (r,
1), using a general theory [40,44-46]:
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PP ()= Y Buuwm fjj dr d7p d7y
mm’'m” 0

Xexp{ — [i(@y; —w) +¥]1y — /T, }
XE(t—TUE e (t— 11— T2)
XEX(t—1m—7— 1)

Xexp{[(wz —w) = Y]} Fi(7, 72, 73)

+&(t—T1 T —T)Em(li— T — T2)

Xexp{ — [i(wy; — @) + 113} Fa(7y, 2, T3)}, (5)
where

84
X{x*(Ke,)(k- €, )
xXexp{il (K, +k,-—k,) r—owt]},

|D%: |

Bmm’m" =

xDS, is a matrix element of the dipole-moment oper-
ator taken with respect to the electron wave function;
{...)o signifies averaging over various molecule ori-
entations, T, = (27,) ~! = (27) ! is the lifetime of the
excited state 2; wy, = (ES + (VY —E}—(V{) /A
+ (W, —W,)/#i is the frequency of the 1 — 2 Franck—
Condon transition. The angle brackets indicate thermal
averaging over the variables of the vibrational subsys-
tems in the ground electronic state of the molecule, N
is the system particle density and L is the Lorentz cor-
rection factor for a local field. The summation in Eq.
(5) is carried out over all fields that satisfy the condi-
tion ks =k, + Kk, —k,,.

The functions F, ;(7;, 72, 73) are sums of four-time
correlation functions [ 40,44—47], corresponding to the
four-photon character of interaction:

Fi(my, 7, 73)

=K, 73, 1+ +73, m+T)

+KO0, n+n, 7+t 7,H), (6a)
Fy(1y, 73, T3)

=K*(0, 73, L+ 7, T+ +T3)

+K*¥0, 1+ 1+, T, ), (6b)

K(09 tl’ t21 t3)
=<CXP(iﬁ-IW2t|) exp[if ='W (1, ;)]

Xexp[ — ik ~'W,(1, — ;)] exp(—if ~'W,13)) .
(7

The value u=W,— W, — (W,— W,) =W, — W, repre-
sents both perturbations of the molecular nuclear sys-
tem and the solvent nuclear system respectively during
the electronic transition. We can divide the operator u
into the intra (M) and inter (S) molecular contribu-
tions, u=uwuy+us, where wups=Woys—Wiys—
(Woms— Wims)-

u(t) =exp(ifi “'W,)u(Q) exp(if ~'W,1)

It is apparent that the values K(O0, t,, 75, ;) (Eq. (7))
can be represented in the form

K(O’ tl’ t2, t3)
=KM(0’ tl H t2’ t3)KS(O’ tlv t29 t3) (8)

due to the fact that u =y + us.

It is very important for the following discussion to
determine exactly the processes which we want to
investigate. We intend to study the solvation dynamics
processes by degenerate four-wave mixing, and by
time-resolved luminescence (TRL), which has been
used in most of the solvation studies in the past [6—
14]. The hot luminescence processes occur after the
completion of the electronic transition phase relaxation,
during the vibrational relaxation in the excited elec-
tronic state. Therefore, we have to conduct our reso-
nance four-photon wave mixing experiment by such a
way to avoid the polarization gratings and to preserve
the population gratings. The polarization gratings are
destroyed during the phase relaxation time T’ of the
electronic transition, and the population ones are
destroyed during the vibrational relaxation time 7.

We shall consider molecules with broad structureless
(or weakly structured) electronic spectra for which the
following inequality is fulfilled:

0'273 > 1,

where g, is the second central moment of an electronic
spectrum. It has been demonstrated that the following
times are typical for the time evolution of the system
investigated [40,42,48]:

o, < T' < 7.,
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where o5 12 plays the role of the reversible dephasing

time of an electronic transition, T’ = (7,05 )!/* plays
the role of the irreversible dephasing time, and 7, plays
the role of the relaxation time of populations. The typ-
ical value of the irreversible dephasing time for com-
plex molecules in solutions for usual conditions
T'=25fs [40]. Therefore, the character of the
response of the system under study (0,72 > 1) in
degenerate four-wave mixing experiment (Fig. 4)
depends on the relation between 7'/ and the pump pulses
duration 1, [40,42].

The pump pulses k, and k, form a polarization and
a population grating. The polarization grating decays
with a characteristic time constant ~ T'. Therefore, if
the pulse duration #, > T'>c5'/? (and naturally,
T~t,>> T'), only the population grating preserves
and the probing pulse k;, delayed by time 7, allows one
to measure the population grating relaxation [40,42].

Thus, a four-wave mixing experiment will provide
similar (but not identical) information as TRL exper-
iments (solvation dynamics), if relatively long pump
pulses ¢, >> T’ will be used.

In our experiment the pump pulse duration ¢, > T’
(t,~1501s). It is worth noting that resonance degen-
erate four-wave mixing experiments with very short
pump pulses 7, ~ 10 fs have been conducted in several
studies {15,49,50]. Since in these experiments £, <T’,
the signal must be different from our experiments as
indicated in the former theoretical calculations
[40,42]. The following simple arguments show the
difference in signal behaviors in degenerate four-wave
mixing experiments with £,~10fs<o; /> <T’ and
1, T'>0; "2, correspondingly. Relatively long
pump pulses ¢, > T’ of frequency w create a hole in
the initial thermal distribution relative to a generalized
solvation coordinates in the ground electronic state
(Fig. 1a) and, simultaneously, a narrow spike in the
excited electronic state. These changes are measured
by the probe pulse at the same frequency w.

In the case of very short pulses 1,<o5 ' <T' in
the framework of the picture shown in Fig. la (vertical
optical transitions), the spectral width of such pulses
Aw~ 1/t, is sufficient to excite the whole ground state
distribution and for the creation of a very broad spike
in the excited state. The absorption energy of a very
short probe pulse can be of very little sensitivity to the
relaxation of the created broad spike in the excited state,
especially in the case of £, < o5 '/%. Such a situation
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Fig. 1. Potential surfaces of the ground and the excited electronic
states of a solute molecule in liquid. (a) One-dimensional potential
surfaces as a function of a generalized solvent polarization coordi-
nate. (b) Two-dimensional potential surfaces of the ground and the
excited electronic states.

is opposite to the case with

long pulses
t,>> T'>o;5"%
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We do not deliberately draw the picture correspond-
ing to excitation by very short pulses, because for them
(1, < T") the picture of vertical transitions (Fig. 1)
is incorrect [40,42,48]. Such pulses (#, < T’) excite
coherent effects (polarization grating) and, as a matter
of fact, degenerate four-wave mixing with pulses
t, < T’ represents the case of stimulated photon echo
spectroscopy [15]. In this section we only wanted to
emphasize the difference between degenerate four-
waving mixing spectroscopy using short pulse dura-
tions z, <7’ and long one #, > T'. In the next sections
we shall term degenerate four-wave mixing spectros-
copy with long pump pulses 7, => T’ as resonant tran-
sient population grating spectroscopy (RTPGS).

We shall use some assumptions on calculating the
cubic polarization P® * (r, t) from the general equa-
tions (5)—(7).

(1) We shall use a Gaussian approximation for the
value ug representing the perturbation of the solvent
nuclear system during the electronic transition. The
Gaussian approximation is valid for the description of
the intermolecular relaxation [43,51]. The interaction
energy of the solute molecule with its surroundings can
be represented as the sum of the energy of interaction
with the individual solvent molecules. Accordingly, the
quantity ug(f) can be also represented as a sum
us(t) = X; ug;(t) of random variables ug;(¢) associated
with the jth solvent molecule, correspondingly. The
number of such solvent molecules (j) can be quite large
(in the absence of specific chemical interactions). In
addition the contributions us;(¢) can be considered for
a liquid as weakly correlated. According to the central
limit theorem of the probability theory [52], these
properties of ug;(¢) permit one to consider the magni-
tude ug(t) as a Gaussian stochastic function [51].

In this case the four-time correlation function K (0,
4, b, t3) (Eqgs. (7),(8) ) can be represented as follows
[40,44-46];

Ks(0, 1y, 1, 13) =explgs(t; — 1) +gs(1)
+gs(t, — 1) —gs(t2) —gs(t: — 1)) +gs(85)1, (9)

where
gs(t) = —Fi 2 j dr’ (1—1') Cus(O)us(1')) »
()

(us(0)us() y=HA20,5S(1) . (10)

S(t) is the solute-solvent correlation function,
0,5 = (u3 (0) )% ~2 is the contribution of the solvent to
the second central moment of both the absorption and
the luminescence spectra.

We shall consider the translational and the rotational
motions of the liquid molecules as classical, at room
temperature, since their characteristic frequencies are
smaller than the thermal energy k7. The solvent con-
tribution ws, to the Stokes shift of the equilibrium spec-
tra of the absorption as well as the emission is of the
order of 1000cm ™. For the classical case we have
[43,51,53]

a'zs—_'wStkT/ﬁ. (11)

Let us denote by 75 the characteristic decay time of the
“‘intermolecular’” correlation function (ug(0)us(f)).
In any case 75> 10~ '35 [13]. Since o55'/2 ~10"s,
the parameter 0,572 > 102 > 1. For this case we can
write [40,44-46]

Ks(O, 3, i+ +73, n+73)

=exp{ — 3057} + 73 — 27 13 S(m) 1}, (12a)
KEO, 55, 47, m+nt+m)

=exp{ — ;05s[ 7} + 73 +27, 138(1) 1}, (12b)
Ks(O, o +7m, i+ +73, 13)

=expliog[1—S5(7)]1}

XKs(0, 73, 1+ 7+ 73, +13), (13a)
KEO, 4147, ntn,m)

=expfliwg[1—5(n)]1}

XKEO, 7, T +m, i+ n+m). (13b)

(2) For simplicity, we shall also use a Gaussian
approximation for the quantity u,, representing the per-
turbation of the molecular nuclear system during an
electronic transition. Such an approximation is correct
for harmonic molecular vibrations in the case of a linear
electronic vibrational coupling, and hence the absorp-
tion and emission spectra reduces to mirror symmetri-
cal spectra.

In a Gaussian approximation the four-photon corre-
lation functions Ky(0, ¢, 5, t;) (Egs. (7), (8)) are
also determined by Eq. (9) where one has to replace
the quantities gs(#) and {us(0)us(r)) by gm(?) and
{(upm(0)up (7)), correspondingly. It is worthwhile to
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note that Eq. (9) is also correct in the case of the non-
Gaussian contribution to the quantity u. However, such
contributions must be small. Non-Gaussian contribu-
tions to uyy can be determined by the quadratic elec-
tronic vibrational interaction and anharmonicity.
However, for the S,— S, optical transition in large
molecules, such effects are usually small in comparison
with the linear electronic vibrational coupling and
therefore in many cases perturbation theory is sufficient
to calculate their contributions.

The assumption that u, is Gaussian is not obligatory.
The generalization for the case of an arbitrary nature
of uy, will be published elsewhere.

(3) Numerous experiments [ 54-56] show that the
Franck~Condon molecular state, achieved by an optical
excitation, relaxes very fast, and the intramolecular
spectra spectrum forms within 0.1 ps. Therefore, we
shall consider that in our experiments, the intramolec-
ular relaxation takes place within the pulse duration
(t,= 150 ps) *'. More exactly, there are a fast and a
slow steps in the relaxation of a Franck—Condon state.
The faster component is mainly determined by the
intramolecular relaxation while the slower step is deter-
mined by the intermolecular relaxation. This assump-
tion is not critical for the theory. It is necessary only
for carrying out specific calculations.

It follows from Eqgs. (12) and (13) that the inter-
molecular relaxation is described by the correlation
function S(7,), and the upper boundary values for the
times 7, and 73~ 055'/2. Therefore, we can equate
7= 13=0 in the arguments of the field functions &,
& s & in Eq. (5) [39,40,57]. In addition, the time
7, is of the order of the intermolecular relaxation time
7s. The intramolecular functions gy(t), which depend
on 7,, will attenuate to zero in accordance with the
assumption that the intramolecular relaxation is faster

#1 This assumption might be wrong for slow isomerization and con-
former intramolecular transitions as well as for low frequency intra-
molecular vibrations [56). However, the contribution of low
frequency intramolecular vibrations to the whole attenuation of a
nonequilibrium state was found to be 20 times weaker than the fast
component with a decay time of 60 fs attenuation [56]. The contri-
bution of these low frequency vibrations to the signal can be
explained by non-Condon mechanisms {57]. As to isomer and con-
former transitions, for LDS dyes the isomerization time is rather long
(250ps). We shall discuss in detail this issue in the discussion
section of the paper. Concerning the two stages of a molecular relax-
ation in solutions (fast-intramolecular and slower-intermolecular
one) see refs. [55,58].

than the intermolecular one. Keeping this in mind, we
can write the quantities F, and F, (Eqgs. (6)) in the
form, using Eqgs. (12) and (13):

Fia={explgm(—71)]
+exp{gm(n) +iws[1-S5(7)]1}
Xexp{ —ious[ I + 13 F21 135(72) ]
+em(E7)}, (14)

where
()= —F 2 j A’ (1= 1) Cting (Ot (1))
[4]

is the logarithm of the characteristic function (Fourier
transformation) of the ‘‘intramolecular’’ spectrum of
one-photon absorption after subtraction of a term which
determines the first moment of the spectrum.

We can integrate the right-hand side of Eq. (5) with
respect to 7; and 73, using (14) and the approximate
independence of the fields &, on these time arguments.
Using Eqgs. (4), (5), and (14), we obtain for the signal
excited by nonoverlapping pulses which are short with
respect to the intermolecular relaxation time

Js(7) ~exp( —27/Ty) |A(T)|%. (15)

The term exp(—7/T,) describes the attenuation of
P®* due to the destruction of the grating based on the
population of the vibrationally relaxed excited elec-
tronic state. The term |A(7) | describes the contribu-
tion of the solvation dynamics to the time evolution of
the signal.

Let us consider the main physical processes, occur-
ring in a solvating system under a laser excitation (Fig.
1). The pump pulses of frequency o create a hole in
the initial thermal distribution relative to the general-
ized solvation coordinate in the ground electronic state
and, simultaneously, a spike in the excited electronic
state. Apparently, such formations have a space mod-
ulation ~exp[ —i(k, —k,)-r}. These distributions
tend to the equilibrium point of the corresponding
potentials over time, and are also broadened during
their movements. These changes are measured by the
probe pulse delayed by a time 7 relative to the pump
pulses.
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Let us adduce at first the formula for A(7) without
taking into account the intramolecular degrees of free-
dom [40]:

A(T) ~F§(w0—wy)

X(FSa(w— Wo, T) + Fs(@—w,, 7)

+i ‘/i;r‘ [XSa(w—wa’ ) +XS¢(w—w(m T)])’

(16)

where ‘‘e’’ means the equilibrium value. The formula
completely corresponds to the physical processes tak-
ing place in solvation of the system considered before.
The value of A( ) depends on changes related to none-
quilibrium solvation processes in both the F, ,, absorp-
tion (a) and the emission (¢) spectra [40],

Fsop(w— w44, T)

. . exp{ — [0 — wae(1)]*/20(7) },
V2wo(T)

(17)
at the active pulse frequency w, as well as on the cor-
responding changes in both the spectra of the refraction
index X, (0 — W44 7). X5, are related to Fg, , by

the Kramers—Kronig formula, and have the following
form [40]:

XSa,:p( W= Wy T)

)
=Fsap{0— W4y, T) Erﬁ(%%“i—;—z) .

where
X

Eific) = [ exo(y?) dy.

[}

As can be seen from Eq. (17), the changes in both
spectra Fs, , at each instant in time 7 are Gaussian
functions with time dependent width proportional to
[20()]'

o(1) =0x[1-S*(D]. (18)

Thus, as follows from Eq. (18) the width of the light-
induced changes in both spectra are small for small
delay times 7 (S(7) = 1). The hole and the spike dis-

tribution broaden in time relative to the solvation coor-
dinate (Fig. la).

The detuning w— w, ,(7) of Fg,, are functions of
the delay time 7 [40]:

@ (T) =y + (w—@y)S(7),
0 (7T) = (W —wg) + (w— Wy +wg,)S(7) . (19)

The detuning w— w,(7) is connected with the motion
of the hole in time, and the detuning @ — w,( 7) depends
on the motion of the spike (Fig. la). The values
Xsu (00— w, .. T), Wwhicharerelated to Fg,, ,(0— @, ,,
7) by the Kramers—Kronig formula, display the corre-
sponding changes in the index of refraction.

Now, let us take into account the intramolecular
vibrations. In this case the adiabatic potentials will be
represented by hypersurfaces (Fig. 1b). The corre-
sponding absorption and emission spectra will be rep-
resented by the convolutions

Fe(w—wy)
- j’ do’ Fu(w)) Fsa(w—wyy —a’y,  (20a)

F;(wzl — g — W)

= J‘ dw’ FM(w’)Fsv,(wZI — Wg, —w_w,) .
(20b)

The shape of the ‘‘intramolecular’’ spectrum Fp, (')
is determined schematically by the 1-D potentials
U,(Qwm, 0) and UES(Qy) (Fig. 1b) that are obtained
by the intersection of the hypersurfaces U,(Qu, Os)
and U,(Qwm, Qs) by a vertical plane passing through
the ‘“molecular’’ coordinate Qp,:

Fu(w’) =(2m) ! j dt explgn(t) —iw’t] . (21)

The “‘intermolecular’’ spectrum Fg,(w— @, — ') is
determined by ‘‘1-D’’ potentials that are obtained by
the intersection of the hypersurfaces by a vertical plane
passing through the solvation coordinate Qs. The situ-
ation is similar for the emission spectrum. Typical
‘‘intramolecular’’ and whole spectra are shown in Fig.
2.

We now calculate A(7) in the general *‘2-D’ case
where both the intramolecular and intermolecular con-
tributions are taken into account. The calculation is the



224 S.Y. Goldberg et al. / Chemical Physics 183 (1994) 217-233

max

F¢1,¢/Fa,¢>

0.0 L1
-60 -40

1 1 1 1
-2.0 [§) 20 40 60
(w-wel)/20,
Fig. 2. The shape of the ‘‘intramolecular’’ spectra Fy(®’). 1 and 2
are the equilibrium luminescence and absorption spectra of a mole-
cule, respectively, when the solvent contribution from the solvent is
absent; 3 and 4 are the equilibrium spectra of a molecule in solution.
The arrow shows the relative position of excitation frequency w for
the four-photon signal calculation (Fig. 3).

generalization of the results [40] for the case of an-

arbitrary spectrum F(w’), corresponding to the reor-
ganization of the ultrafast intramolecular degrees of
freedom during the electron transition.

In the general case the value of A(7) is represented
by the 2-D integral:

A= [ [ 4’ 40" Pl Fsutamwm — ")
X(FSa(w—w,,, T +Fs (0w—w,, 7)

+i ‘/i; [XSa(w-wav T) +XS¢(w—w¢’ T)])’

(22)

which does not reduce to the product of the one-dimen-
sional integrals (according to Eq. (20) ). The reason is
that the frequencies w, , in Eq. (22) are functions of
both w’ and w”:

w(7) = (0 + @) + (0~ wy —w")§(7),
0, (1) =(wy — @'~ ws)

+(w—wy — 0"+ ws)S(7) . (23)
The physical reason for such a dependence is given by
the following arguments. Let us return to Fig. 1a. The
situation that is shown in this figure is characteristic
also for the ‘*2-D’’ case, however, it is true only for the

intersections of hypersurfaces by the vertical plane
passing through the coordinate Qg (Fig. 1b). There-

fore, any distribution shown in Fig. 1a will be accom-
panied by the equilibrium distribution with respect to
the ‘‘intramolecular’’ coordinate Q,,.

Let us consider for the definition only the processes
corresponding to the second and the fourth addends in
Eq. (22). The pump pulses act along the transition a
between the ‘‘plane’’ potentials U;(Qy, 0) and
UE(Qu) (Fig. 1b), bearing the spike of the distribu-
tion on the bottom of the Franck—Condon potential
UEC(Qm) (point A) due to the instantaneous intra-
molecular relaxation. If the delay time 7 of the probe
pulse is small with comparison to the relaxation time
with respect to the coordinate Qs, the probe pulse will
act also between the potentials U5C(Qy) and U;(Qwm,
0) and, correspondingly, the spectra Fy(w’) and
Fu(@”) in Eq. (22) will be strongly correlated. For
large delays 7, the spike will relax to the equilibrium
state (point B). Therefore, the probe pulse will probe
a peculiarity in the range of the pair of potentials:
U,( Uy, ds) and USC(Q,,) (the transition ¢). The cor-
responding spectra Fy(w’) and Fy(@") will not cor-
relate. In this case the double-integration reduces to the
product of 1-D integrals, i.e. to the product of the cor-
responding equilibrium spectra.

Figs. 3 illustrate the time behavior of the signal J5(7)
that was calculated by formulae (15), (17)~(23). The
shape of the ‘‘intramolecular’” spectrum Fy (') is
modeled by a *‘smoothed’’ dependence of one optically
active intramolecular vibration of frequency w,
[59,60]: Fy(w’) ~8*/I'(x+ 1) where I'(x+ 1) is the
gamma-function, x= (0’ —wy)/w, ©,=(E3+
(V$Y—ES —(V$'))/h is the frequency of the purely
electronic transition of a molecule in solution. We
used the following values for the parameters:
wg,(2055) "V2=2,8=1.5, wy(205) ~/?=1.14. The
shape of the ‘‘intramolecular’ spectrum Fy,(w’) for
these parameters is shown in Fig. 2 in the form of the
equilibrium spectra F{(w—w,) and F(w, - o)
when the contribution from the solvent is absent.
F¢{(w— w,) and F {(w, — ) are determined by for-
mulae (20) for the substitutions w,, = w,, w5 =0,
Fso—»d(w—w,~w') and Fg,—6(w,—w—e'),
8(x) is the 8-function of Dirac. The equilibrium spectra
of the molecule in solution F¢(w—w,;) and
F (e, — ws, — w) are also shown in Fig. 2.

It follows from Eqs. (15) and (22) that the signal
Js(7) depends on the excitation frequency w. We chose
w= w,+ ws,/2, which approximately corresponds to



S.Y. Goldberg et al. / Chemical Physics 183 (1994) 217-233 225

e 10 10
2 a . a
2 3
=] o
L =
c Ol 2 0ifF
2 o
] »
®
L\O; ool 0.0l
ol 10 1000 ol 10 1000
t/7To /70
16,
5 —
= 08 3
2 e H b
3 —_
L 54 °
c ° é' 8}
2 n
2 00 |
2
(_O) -04 1 L 1 0 1 .l |
o) 2 3 4 0 | 2 3 4
/7 t/To

Fig. 3. Model calculations of the RTGS signal: (a) the solvation
correlation function consists of a Gaussian followed by three expo-
nential decay (Eq. (17a) ), note the curves are on a logarithmic scale.
(b) the correlation function corresponds to a Brownian oscillator
model for the liquid behavior (Eq. (17b)); 7,=200fs, T}/ np="=.
(a) a;72=17016, a,7,=0.33, as7,=0.04, a,=0.3,
a,=ae=ay=0.2, a,7,=0.00074; (b) I'y=1, 27,=2.83.

the experimental situation (see below). The excitation
frequency o is also shown in Fig. 2.
We used two forms for the correlation function S(¢),

S(t) =ay exp(—a,t?)
+(1—a, —a, —as —ag) exp(—ayt)

+a, exp( —ast) +ag exp(—ayt)

+ag exp( —aot) (24a)
and
S(t) =exp(—TIz])

X [cos(£2) + (I'/42) sin(2)t])], (24b)

corresponding to a Brownian oscillator [ 13,45,46,61-
63].

The first addend in expression (24a) for the first
correlation function corresponds to a fast Gaussian
component, observed in ref. [ 12]. The second one cor-
responds to the relatively fast exponential component
with an attenuation time of 200400 fs observed in ref.
[12] and in our experiment (see below). The third
component corresponds to a slower attenuation with a
decay time of the longitudinal relaxation 7 . It is worth

noting that such a division by different contributions to
the correlation function is purely formal, and is used
here to impart the realistic form of the correlation func-
tion. As a matter of fact, both the short- and the long-
time components of the correlation function are
manifestations of one physical process. We shall dis-
cuss this issue in more detail below. We also showed
in Figs. 3 the time dependence of the correlation func-
tions S(7), used for the calculation of corresponding
signals Js( 7).

One can see that the dependencies S(7) and J5(7)
are very similar (but notidentical), and the signal J5( 7)
reflects the fine details of S(7). Thus, the RTPGS can
be used for the ultrafast study of the solvation dynam-
ics.

The dependence of the signal J5(7) on the excitation
frequency w is investigated in ref. [64].

Comparison of RTPGS with pump—probe spectros-
copy. In transmission ‘‘pump—probe’’ experiments
[56] the dependence of the change in the sample trans-
mission AT on the delay time 7 between pump and
probe pulses is measured. This dependence is given by
[48,57]

AT(7) ~ —Re J' dt Efope(1—1)

d .
X o [PP* (1) exp(—iwn)] . (25)

For the above-mentioned assumptions we obtain
AT(1) ~wexp(—17/T,) Re A(7), (26)

where A(7) is determined by Eq. (22). The compari-
son of Eq. (26) for AT(7) with Eq. (15) for Js(7)
shows that the signal in pump—probe spectroscopy is
determined by the same physical processes as for
RTPGS. However, in contrast to the latter, AT( 7) does
not depend on the refraction index X, , spectra.
Comparison of RTPGS with TRL spectroscopy. The
relaxation processes of an excited molecule are
observed by both techniques, the TRL and the TRPGS.
Since the signal in TRPGS is determined by the pop-
ulation grating (which includes the contribution of both
the space modulation of the electronic level populations
and the space modulation of the vibrationally nonequi-
librium populations), it must be closely related to the
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TRL signal that is also determined by the electronic
and the vibrational populations.

The equation describing the dependence of the TRL
Gf(», o, 7) on the radiated frequency v, the excitation
frequency w, and the time 7 after excitation is given by
[51]

Gi(v,w,7)= J j do’ do” Fy(w)YFy(o™)

F§o(@— 0y — 0")Fs (V= 0, 7) . (27)

Eq. (26) is correct when the intramolecular relaxation
is much faster than the solute-solvent one [51]. One
can easily see that Eq. (26) coincides with the second
term in the right-hand side of Eq. (22) for A(7) when
v=w. Thus the transient luminescence spectrum pro-
vides a contribution to the observed signal of RTPGS.
We would like to emphasize, that the molecular model
we presented is the same for RTPGS and TRL.

There are three main differences between the RTPGS
and the TRL spectroscopy. First in luminescence, the
whole spectrum is measured while in RTPGS only the
excitation frequency is monitored. Second, the RTPGS
monitors both the excited state and the ground elec-
tronic state relaxation. Third, in the RTPGS experiment
the refraction index spectra of the ground and excited
states also contribute to the signal.

3. Experimental details

The laser source consists of a cw mode-locked
Nd:YAG laser (Coherent Antares) operating at
76 MHz. A small portion of the 1.06 pm radiation
( ~20 mW) is used to seed acw Nd : YAG regenerative
amplifier operating at 500 Hz. The regenerative ampli-
fier output pulses of 1.1 mJ energy at 1.06 p.m are dou-
bled with a beta barium borate (BBO) crystal and reach
and energy per pulse of 0.4 mJ at 532 nm. The doubled
frequency output of the amplifier (70 ps full width half
maximum) was used to amplify the ultrashort laser
pulse 140 fs fwhm, 1 nJ generated by a synchronously
pumped dye laser. The synchronously pumped dye
laser (Satori, Coherent) utilizes a saturable absorber in
combination with group velocity dispersion compen-
sation prisms to achieve a stable pulse width of the
order of 140fs. The dye amplifier consists of three
flowing dye cells pumped by the regenerative amplifier
second-harmonic pulse. With Kiton red dye the dye
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Fig. 4. The schematics of the optical setup for time-resolved degen-
erate four-wave mixing experiments. BS: beam splitter. DL: delay
line, SM: step motor. HR: high refiector.

laser operates at 635 nm central wave length and the
amplification is achieved by DCM dye to ~ 15 pJ with
a pulse width comparable with the non-amplified pulse.

The four-wave mixing optical setup is shown in Fig.
4. The amplified (15 nJ) 140fs laser pulse was split
into three beams. Optical delay lines were used to over-
lap in time the pump beams and to control the time
delay of the probe beam. The three beams (parallel
polarization) were focused onto the sample by a single
lens of 50 cm focal length. In DFWM experiments the
signal beam exit the sample at a unique direction
ks= (k, —k;) +k, and therefore it is easily separated
from the three generation beams.

LDS 750 (styryl 7) was purchased from Exciton and
was used without further purification. The solvents
used were either analytical or of a spectroscopical
grade. Samples were circulated in a flowing cell of
1 mm pathlength.

4. Experimental results

The time-resolved four-wave mixing signal was
measured by the experimental setup shown in Fig. 4.
The time dependent four-wave mixing signals of LDS
750 in methanol, 1,2-ethanediol, 1,3-propanediol and
1,4-butanediol are shown in Fig. 5. The absorption and
emission spectra of LDS 750 in 1,3-propanediol are
shown in Fig. 6. The signals were collected with a
relatively low time resolution by scanning the probe
beam delay stage at 0.5 ps steps. As seen from Fig. 5
the signal decay curves for LDS 750 in these solvents
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Fig. 5. Degenerate four-wave mixing signal of LDS 750 in various
solvents as a function of time delay between the pump pulses and

the probe pulse: from top to bottom, 1,4-butanediol, 1,3-propanediol,
1,2-ethanediol and methanol.
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Fig. 6. The absorption (1) and luminescence (2) spectra of LDS
750 in 1,3-propanediol.

are nonexponential and consist of several time
domains. The long life time component in methanol
exhibit an exponential decay law with corresponding
life times of 120 ps. This life time we attribute to the
electronic population grating attenuation. The fluores-

cence lifetimes of LDS 750 in methanol 1,2-ethanediol,
1,3-propanediol and 1,4-butanediol are 240ps [11],
600, 900 and 1100 ps respectively. The factor of two
between the electronically excited state lifetime meas-
ured by luminescence technique and the longest decay
of the DFWM signal arises from the following argu-
ment. The signal in DFWM experiments is proportional
to |P®*|% (P is the cubic polarization). If popu-
lation gratings are formed in such experiments then
P®* decay as exp(— 7/T,) where T, is the excited
state lifetime. However, the DFWM signal decays as
exp( —27/T,). Thus the decay rate constant of a pop-
ulation grating in a DFWM experiment is twice as large
as the actual decay rate constant of the excited state
population.

The shorter time components of the DFWM signal
of LDS 750 in methanol, and the diols are seen on a
shorter time scale with an expanded time resolution
(100 fs time steps) in Fig. 7. Each of the decay curves
shown in Fig. 7 consists of three time components. We
attribute all these time components to the solvation
dynamics of LDS 750.

The longest component can be approximately fitted
to an exponential decay with decay times of 5, 10, 30
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Fig. 7. DFWM signal of LDS 750 in four solvents measured by delay
line steps of 100 fs.
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and 70 ps for methanol, 1,2-ethanediol, 1,3-propane-
diol and 1,4-butanediol, respectively. These relaxation
times correspond to the longitudinal dielectric relaxa-
tiontime 7, of the particular liquid. The dielectric relax-
ation properties of monoalcohols were studied quite
extensively [65,66]. While the dielectric relaxation
time 7y, is obtained for measurements that senses the
orientational motion of the liquid molecules at constant
field, the longitudinal relaxation time 7 provides the
liquid relaxation time at constant charge. The two relax-
ation times are related by a simple formula 7 = ( &,/
&5) T where &5 and &, are the low and high frequency
dielectric constant respectively. The constant charge,
longitudinal relaxation time is more appropriate to
compare with the solvation dynamics of excited solute
molecules [1,3,6].

The dielectric relaxation properties of neat normal
primary alcohols present a complex behavior. This
complexity is attributed to the hydrogen bonding
between adjacent molecules. The relatively long relax-
ation time is attributed to the breaking of hydrogen
bonds in molecular aggregates followed by ROH rota-
tion. In addition to the long relaxation component,
shorter relaxation times are observed in alcohols. Since
the dielectric relaxation measurements are frequency
limited by the instrument response, the high frequency
dielectric response obtained in these measurements is
inaccurate and often not available. Garg and Smyth
[65]1 analyzed their data for propanol to dodecanol in
terms of three different relaxation times for each alco-
hol. They explained the intermediate relaxation time as
arising from rotation of a free monomeric molecule.
The shortest relaxation time is that for the relaxation of
the hydroxyl group by rotation around its C-O bond.
It was estimated to be ~2ps and was found to be
insensitive to the particular liquid.

The dielectric spectra of diols are unsymmetrical.
The Cole—Cole plots are skewed ones over most of the
dispersion range [ 67]. Various relaxation model func-
tions have been assumed in earlier work on diols. In
early investigations of dielectric spectra of liquids few
frequencies and rather limited frequency ranges have
been used to characterize the spectra and therefore the
differentiation between model functions was difficult.
In more recent studies of linear 1,2-diols by El-Samahy
and Gestblom [68] (using dielectric time domain spec-
troscopy ) and Jordan et al. [69] (using spot frequency
domain measurements between 10 MHz and 70 GHz)

it was found significantly better fit to their data assum-
ing two Debye relaxation times rather than model func-
tions like Cole—Davidson distribution or Cole—Cole
distribution. The two dielectric relaxation times for
1,2-ethanediol are 140 and 20 ps {68]. The long relax-
ation time is approximately the same as for ethanol. In
monoalcohols like methanol, 7y, the shorter decay time
is generally interpreted in terms of a monomer reorien-
tation while 7, represents a cooperative motion con-
nected with the breakup of hydrogen bonds inside a
polymeric alcohol unit. The similarity in the dielectric
spectra of mono and dialcohols indicates analogous
behavior. However, in diols 7p, increases more pron-
ouncely with the molar mass than for monoalcohols. In
contrast the longer relaxation time 7y, is less sensitive
to the chain length than the corresponding monoalco-
hols.

The short time components of the DFWM signals of
LDS 750 in methanol and the diols solutions are shown
in Fig. 8, using 20 fs time steps of the probe beam delay
stage. The DFWM signal for both solvents consists of
an ultrashort spike followed by a ~400 fs (methanol)
and a <400 fs decay for the diols. The initial Gaussian
shape spike is due to a contribution of two superim-
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posed components. A coherent contribution arises due
to repumping of energy from the pumping beams to the
probe beam and is often found in DFWM experiments.
The coherent spike fwhm is determined by the laser
pulse correlation function and hence by the laser pulse
width. The coherent spike prevents us for the time being
to resolve accurately the first ~ 150 fs of the solvation
dynamics.

The ultrafast solvation dynamics of LDS 750 in ace-
tonitrile was studied by Rosenthal et al. [12] using
time resolved luminescence technique with ~125fs
fwhm instrument response function. The solvation
response consisted of two distinctive parts. A fastinitial
decay accounted for ~ 80% of the amplitude was fit by
a Gaussian. The slower tail decayed exponentially with
a decay time of 200 fs. In a subsequent study, Cho et
al. [13] measured the time-dependent nonresonant
optical Kerr effect in neat acetonitrile liquid. Both
experiments have shown the biphasic character of the
solvent response. A vibrational model was used to
describe quantitatively the solvation and the neat liquid
dynamics [ 13]. A number of Brownian oscillators with
frequency distribution of the vibrational modes pro-
duce a very good fit of both experimental data.

The shortest time component has a Gaussian shape

1 v

(see Fig. 8) but cannot be time resolved since the
coherent spike is superimposed on it. Also the pulse
duration in our experiment is longer than the predicted
Gaussian component of the solvation. We now wish to
compare the solvation dynamics on the short time scale
<2 ps of LDS 750 in methanol, and the diols. On this
short time scale the solvation dynamics in all solvents
is quite similar. The relative height of the coherent spike
superimposed on the Gaussian compound versus the
subsequent total signal is the same in all three liquids
(see Fig. 8). The decay time of the exponential com-
ponent is ~400 fs in MeOH and longer in diols. This
decay time is about twice as longer than in acetonitrile
[12,13]. It is interesting to note that while the longer
solvation components in these liquids are strongly
dependent on the particular liquid, the ultrafast solva-
tion dynamics is almost identical ( within the S/N ratio
of the experimental data).

However relative amplitude of the ~400fs com-
ponent is ~ 0.4 for methanol and drastically smaller in
the diols (0.2, 0.15 and 0.1 in 1,2-ethanediol, 1,3-pro-
panediol and 1,4-butanediol, respectively).

The solvation dynamics of probe molecules in asso-
ciated liquids is quite complex and spans several time
decades. In order to follow accurately the solvation
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Fig. 9. The solvation correlation function of LDS 750 in 1,4-butanediol measured by time-resolved emission technique.
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dynamics on the subnanosecond time scale we meas-
ured the time resolved fluorescence of LDS 750 in
methanol and in the diols. Time correlated single pho-
ton counting technique with 50 ps instrument response
was used to follow the solvation correlation function
S(t) (see Egs. (23) and (27)) at times longer than
2 30ps. The combination of both methods RTPGS
limited by our delay lines to time shorter <200 ps and
the TCSPC limited by the instrument response > 30 ps,
increases the time range, the time resolution and the
signal to noise ratio of the experimental data. Fig. 9
displays the solvation correlation function obtained
from the time resolved spectra of LDS 750 in 1,4-
butanediol constructed from TCSPC data. The approx-
imate solvation function from ~100fsto ~1nsona
logarithmic scale is shown in Fig. 10.

Using the similarity of the RTPGS signal and the
correlation function (Fig. 3), the signals shown in Fig.
10 were constructed as follows. The four-wave mixing
signals with high, medium and low time resolution of
a particular solvent (see Figs. 5, 7 and 8) were added
together to construct the signals shown up to ~ 100 ps.

1,2 Ethanediol i

1,3 Propanediol

0L +

SIGNAL [a.]

1,4 Butanediol

0.01 0.1 1 10 100 1000
TIME [ps]

Fig. 10. Solvation dynamics of LDS 750 in three diols presented on
a logarithmic scale. Note: The solvation dynamics is displayed on
four decades of time.

The time resolved emission of LDS 750 at 650 nm was
added to complete the signal up to 1000 ps (we used
the single wavelength method for the determination of
the correlation function [74]). The total signal (in
order to exclude the attenuation) was then multiplied
by exp(t/7,) where T, is the excited state life time and
finally the relaxed emission was subtracted from the
signal. The processes signals displayed in Fig. 10 pro-
vide the high time resolution necessary to define the
initial solvation components as well as the slowest com-
ponents in one curve.

The solvation dynamics shown in Fig. 10 is complex
and it occurs on four time decades <100 fs to several
hundred picoseconds. For LDS 750 in 1,4-butanediol
using a Gaussian and four exponential fit the charac-
teristic times involved in the solvation dynamics are: a
Gaussian component with a relative amplitude 0.3 and
time of <100 fs, a small component with an amplitude
of 0.1 and a decay time of ~ 600 fs followed by 5 ps,
70ps and ~250ps components with amplitudes of
~(.15, 0.15 and 0.15 respectively.

S. Discussion

In the present study we continue our efforts to under-
stand the solvation dynamics of large probe molecules.
To probe the relative merits of viscosity and solvent
relaxation time in solvation dynamics of LDS 750, we
have utilized the fact that in diols the two parameters
do not scale linearly with the corresponding values of
monoalcohols. The diols have larger dipole moment
and larger viscosities than monools ( 1,2-ethanediol, u,
2D, 7, 19 cP; ethanol, u, 1.7D, 1), 1.2 cP). In contrast,
the longer dielectric relaxation times measured by elec-
trical relaxation methods are about the same (140 ps
for 1,2-ethanediol and 120 ps for ethanol [68-71]. In
the study of solvation dynamics and intramolecular
electron transfer processes, monoalkanols scale almost
linearly with viscosity and the relative utility of the two
parameters in evaluating solvation dynamics was not
easily clarified.

Time resolved four-wave mixing method provided
the solvation dynamics of LDS 750 on the short and
medium time scales ~ 100 fs—200 ps. The four-wave
mixing data between ~50 and 200 ps match quite
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nicely to the solvation dynamics measured by time
resolved fluorescence measurements (see Fig. 10). The
solvation dynamics complexity is clearly seen in Fig.
10. For simplicity, we analyzed the experimental
curves by a Gaussian component followed by four
exponents where the longest one we attribute to the
excited state life time.

In all solvents the superimposed coherent spike and
the Gaussian component have the same relative ampli-
tude ~0.3.

The relative amplitude of the first exponential com-
ponent is strongly dependent on the solvent. For meth-
anol, the relative amplitude is ~0.4 while for
1,4-butanediol ~0.1. The decay time constants of the
shortest exponent are 400600 fs. It is difficult to deter-
mine the exact rate since the relative amplitude is small
and the exponential analysis serves only as a guideline
to quantify the complex relaxation.

As mentioned previously, the dielectric relaxation
measurements indicated that in monoalcohols ultrafast
dielectric relaxations of the order of ~ 2 ps exists while
for 1,2-ethanediol the shortest component found is
~20ps. Our solvation dynamics experiments show
that the time scale of the fastest solvation components
for monools and diols are much shorter. In all solvents
it consists of a Gaussian component of <100 fs fol-
lowed by a ~400fs exponential decay. Molecular
dynamics simulations of solvation dynamics in meth-
anol [29] have shown that the solvation dynamics is
biphasic. A Gaussian contribution with <100fs is
identified as arising from the inertial rotational motion
of the solvent molecules. The second component is
longer and approximately decays exponentially with
400 fs decay time. Classical molecular dynamics sim-
ulation of methanol [31] performed to much longer
times (10 ps) than the solvation simulations work [29]
1 ps shows the long solvation component of 5 ps (found
in our experiment) as well as the short components.
The ultrafast solvation components can be deduced
from far infrared absorption measurements [33,34].
The Fourier transform of the far-infrared absorption
line shape of neat acetonitrile and acetonitrile in other
liquids shows both the Gaussian and the exponential
components of the solvent orientational correlation
function. The second exponential rate constant is
strongly dependent on the solvent. For methanol it cor-
responds to 7p;. In the diols the second exponent is
followed by a longer decay which corresponds to the

longest dielectric relaxation time 7,, measured by elec-
trical measurements via the longitudinal relaxation
time 7, = (&./ &) T-

Bearing in mind the possibility that two isomers of
LDS 750 [72] exists, let us discuss this in the frame-
work of our theory. The generalization of the theory
for the case of a few isomers is direct. One must cal-
culate the values A,( 7) for each isomer, and the TRPGS
signal J5(7) (Eq. (4)) is given by

2

Js(7) ~ |3 exp( = 7/T)A(D)| , (28)

where 7; is the lifetime of the excited state for the ith
isomer. One can also take into account the transitions
between isomers, but they are relatively slow processes
[72]. We shall conduct such a generalization in the
future.

In this work we developed theoretically and experi-
mentally the principles of a new method for the obser-
vation of ultrafast solvation dynamics: the resonance
transient population grating spectroscopy. Theoretical
results reproduce the main properties of the experimen-
tal curves.

The theory presented in the paper connects a four-
photon signal with the correlation function S(z) that
describes the fluctuations of the value ug(¢) and the
transient Stokes shift of the luminescence spectrum
(w,(?)). The analytical form of S(¢) can be arbitrary
in principal. Its calculation is an independent problem.

There are number of papers devoted to the calcula-
tion of S(#). The model of the strongly overdamped
Brownian oscillator [63,64] describes only the long-
time (exponential) behavior of S(¢). The use of a fre-
quency distribution of the solvation modes in the form
of Brownian oscillators [13] describes both the fast
and the slow components of S(¢). However, such a
description is rather characteristic for polar crystals
than for polar solvents, where the change of the polar-
ization originates from the rotation of the molecules.
The approach based on Kubo’s stochastic theory [ 19]
that describes both the short and the long components,
seems to us rather attractive. However, an approach on
the basis of the generalized Langevin equation [61,73]
is more consistent. On the basis of this equation we
proposed before the non-Markovian model of an opti-
cally active oscillator for electron transitions in mole-
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cules [61]. We shall use such an approach to describe
the solvation correlation function S(¢) elsewhere.
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