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Abstract 

We developed theoretically and experimentally the principles of a spectroscopical method based on resonance transient 
population gratings for a quantitative description of solvation dynamics of large molecules in liquid solutions. l%e salvation 
dynamics of LDS 750 in methanol, 12-ethanediol, 1,3-propanediol and 1,4-butanediol have been measured over four time 
decades from 100 fs to 1000 ps. The solvation dynamics of LDS 750 in all solvents consists of ultrafast as well as slow components. 

1. Introduction 

The dynamics of salvation has been extensively 
studied [l-5] both experimentally [f5-153 and theo- 
retically [ 16-251 in the last decade. Most of the exper- 
imental effort in salvation dynamics is based on 
measurements of emission time-dependent Stokes shift 
of probe molecules dissolved in polar solvents. Pico- 
second [ 1,2] and later on subpicosecond [ 121 time- 
resolved fluorescence spectroscopy provided important 
information on the microscopic solvation dynamics in 
polar liquids. The experimental effort was further sup- 
plemented by results of molecular dynamics simula- 
tions of model polar liquids [28-321. In early 
experimental and theoretical studies the solvation 
dynamics results were related to the solvent orienta- 
tional motion. The first results [ 1,2] were described by 
the continuum model predicting a uniform exponential 
solvation dynamics for Debye solvents with solvation 
times given by the longitudinal relaxation time given 
by T,_ = ( E~/Q) TV, where TV is the dielectric relaxation 
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time and es and E, are the static and the high frequency 

dielectric constants, respectively. The model implies 

that the solvent dynamics is independent of the distance 

from the photoexcited probe molecule. Careful exam- 

ination of the experimental results has shown that the 
solvation dynamics is nonexponential even in nonas- 
sociated solvents while in the macroscopic dielectric 
relaxation measurements of such solvents a single 
exponential relaxation was observed. Rips, Klafter and 
Jortner [ 19,201 explained the nonexponential behavior 
of solvation dynamics by extending the mean spherical 
approximation (MSA) to the dynamic region. Onsager 
[ 211 proposed the “inverted snow ball” model where 
the solvation proceeds from the “outside to the inside”. 
Far from the photo-excited probe molecule the solva- 
tion time is TV. while in the close vicinity of the probe, 
the relaxation is slower and decreases to TV This pre- 
diction has been derived quantitatively by Rips et al. 
[ 201. Simulations of solvationdynamics [ 28-321 have 
shown that the fastest solvation process occurs at the 
first solvation shell and thus in contrast to the “inverse 
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snowball” model. Recent ultrafast time-dependent 
Stokes shift measurements of LDS 750 in acetonitrile 
[ 121 and nonresonant optical Kerr effect measure- 
ments of acetonitrile [ 131 with 50-100 fs laser pulses 
have shown that the early stage of solvation dynamics 
is ultrashort -7Ofs and has a Gaussian shape. The 
Gaussian decay found in the ultrafast solvation exper- 
iments has been known previously from far-infrared 
spectroscopy [33,34] as well as molecular dynamics 
simulations and the Anderson-K&o stochastic mod- 
ulation theory [ 19,351. The Gaussian component is 
attributed to the inertial solvent motion. The inertial 
part accounts for - 80% of the total solvation energy 
in acetonitrile. The inertial solvation dynamics of LDS 
750 in acetonitrile [ 121 is followed by an exponential 
decay with _ 200 fs decay time. 

In this study we propose a spectroscopical method 
for the observation of ultrafast solvation dynamics: the 
resonance transient population grating spectroscopy 
(RTPGS) [ 36-421. This method is characterized by 
high sensitivity and high time resolution limited by the 
laser pulse width. 

The RTPGS method is applied to study the solvation 
dynamics of LDS 750 in highly viscous associative 
protic solvents such as diols. The diols are highly vis- 
cous at room temperature but their orientational lon- 
gitudinal relaxation times are comparable to the 
monoalcohols while the monoalcohol viscosities are 
approximately ten times smaller [ 141. 

We shall show theoretically and experimentally that 
the RTPGS is rather sensitive to solvation dynamics 
and reflects its fine details. 

2. Theoretical background 

Consider a molecule with two electronic states n = 1 
and 2 in a solvent described by the Hamiltonian 

&= i In)[~,-ifcy,+wn(Q)l(nIy 
n=l 

&>E,, (1) 

where E,, and 27, are the energy and inverse lifetime 
of state n, W,,(Q) is the adiabatic Hamiltonian of a 
reservoir (the vibrational subsystems of a molecule and 
a solvent interacting with the two-level electron system 

=f {e,Zm(t) exp[i(k;r-wf)+c.c.]). 
m=l 

Here E +( - ) are the positive (negative) frequency 

components of the field strength, w is the field fre- 

quency; e,, g,J t) and k, are the polarization vector, 
the strength amplitude and wave vector of the mth field. 

under consideration in state n). The molecule is 
affected by electromagnetic radiation, 

E(r, t) =E +(r, t) +E -(r, t) 

Since we are interested in intermolecular relaxation 
processes, we shall single out the solvent contributions 

to En and W,,(Q), 

E,=E;+(Vf), (2) 

W,,(Q) = W,,, + Wso + Wn, 9 (3) 

where W,, is the Hamiltonian governing the nuclear 
degrees of freedom of the solvent in the absence of the 
solute, W,, is the Hamiltonian representing the nuclear 
degrees of freedom of a solute molecule, Ez is the 

energy of state n of the isolated molecule, W,, and 

V;’ describe interactions between the solute and the 

nuclear and electronic degrees of freedom of the sol- 
vent, respectively. It is possible to replace the operators 
V;’ in the Hamiltonian by their expectation values 

(VZ’> 1431. 
In transient four-photon spectroscopy two pump 

pulses with wave vectors kl and kz create a light- 

induced grating in the sample under investigation with 
a wave vector q, =kl -kZ (see Fig. 4 below). The 
grating effectiveness is measured by the diffraction of 
a time-delayed probe pulse k3 with the generation of a 

signal with a new wave vector ks = k3 + (k, - k2). 
The signal intensity Js can be calculated from the pos- 
itive frequency component of the cubic polarization: 

m 

Js(T) - 
I 

dr ]Pc3)+(r, t) 1’) (4) 
-ca 

where T is the delay time of the probe pulse k3 with 
respect to the pump ones. We shall calculate Pc3) + (r, 
t), using a general theory [ 40,44-46] : 
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m 

PCs)+ (r, t) = c B,,.,,. 111 dr, dr, dr, 
mm’m’ 0 

xexpI-[i(~,-w>+rl~,--~/T,} 

x~m.(t-T*)(~m’(r-T~ -72) 

X8;(t-T, -72-73) 

XexpI[i(*, --~)-YI~~IF~(T~~ 72r 73) 

+cszm*(?- 71 - 72 - T3)8;(c, -71 - 72) 

XexpI-[i(q, -~>+YI~~~MT~, TV, ~~11, (5) 

where 

X (fc*(wema)(k-ems)), 

Xexp(i[(k,,,, +k,.-k,)*r-cot]}, 

KD$ is a matrix element of the dipole-moment oper- 
ator taken with respect to the electron wave function; 
(. . .)or signifies averaging over various molecule ori- 
entations, T, = ( 2y2) -’ = (27) -’ is the lifetime of the 
excitedstate2; w;?,=(E(: + (Vf)-Ey-(Vf))lfL 
+ ( W2 - W, )l fi is the frequency of the 1 + 2 Franck- 
Condon transition. The angle brackets indicate thermal 
averaging over the variables of the vibrational subsys- 
tems in the ground electronic state of the molecule, N 
is the system particle density and L is the Lorentz cor- 
rection factor for a local field. The summation in F& 
(5) is carried out over all fields that satisfy the condi- 
tion ks = k,,, + kmn -km. 

The functions F,,,( TV, r2, TV) are sums of four-time 
correlation functions [40&l-47], corresponding to the 
four-photon character of interaction: 

F1(r11 729 73) 

=K(O, 73, 71 +72+73, T2+T3) 

+K(O, 72+73r T1 +72+73, 73)) 

F2(71* 729 73) 

(W 

=K*(O, 73, T2+T3, 71 +T2+T3) 

+K*(Q T1 +T2+T3, T2+T3, 73) 9 (6b) 

K(O, II 9 r2, r3) 

=(exp(ifc-‘W2t,) exp[ih-‘W,(t, -r,)] 

Xexp[ -ih-‘W2(t2-t,)] exp( -iti-‘W2f3)). 
(7) 

The value u = W2 - W,-(W,-W,)=W2-W, repre- 
sents both perturbations of the molecular nuclear sys- 
tem and the solvent nuclear system respectively during 
the electronic transition. We can divide the operator u 
into the intra (M) and inter (S) molecular contribu- 
tions, u=ur&l++s, where UM,S = W~M,S - WIMS - 

w2hl.s - wmd 

u(t) =exp(ifi-‘Wit)u(Q) exp(ifi-‘Wit) 

It is apparent that the values K(0, ti, t2, t3) (E@. (7)) 
can be represented in the form 

=&do, t1, t2, t3)fwA t, 9 f2r t) 

due to the fact that u = uM + us. 

(8) 

It is very important for the following discussion to 
determine exactly the processes which we want to 
investigate. We intend to study the solvation dynamics 
processes by degenerate four-wave mixing, and by 
time-resolved luminescence (TRL), which has been 
used in most of the solvation studies in the past [6- 
141. The hot luminescence processes occur after the 
completion of the electronic transition phase relaxation, 
during the vibrational relaxation in the excited elec- 
tronic state. Therefore, we have to conduct our reso- 
nance four-photon wave mixing experiment by such a 
way to avoid the polarization gratings and to preserve 
the population gratings. The polarization gratings are 
destroyed during the phase relaxation time T’ of the 
electronic transition, and the population ones are 
destroyed during the vibrational relaxation time rc. 

We shall consider molecules with broad structureless 
(or weakly structured) electronic spectra for which the 
following inequality is fulfilled: 

IT23 w 1, 

where a2 is the second central moment of an electronic 
spectrum. It has been demonstrated that the following 
times are typical for the time evolution of the system 
investigated [ 40,42,48] : 

u2 -1’2<Tr GE T,, 
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where u; “’ plays the role of the reversible dephasing 
time of an electronic transition, T’ = (rp; ‘) 1’3 plays 
the role of the irreversible dephasing time, and rC plays 
the role of the relaxation time of populations. The typ- 
ical value of the irreversible dephasing time for com- 
plex molecules in solutions for usual conditions 
T’ = 25 fs [40]. Therefore, the character of the 
response of the system under study (a& Z+ 1) in 
degenerate four-wave mixing experiment (Fig. 4) 
depends on the relation between T ’ and the pump pulses 
duration fP [ 40,421. 

The pump pulses k, and kz form a polarization and 
a population grating. The polarization grating decays 
with a characteristic time constant - T ‘. Therefore, if 
the pulse duration f,, > T’ > o; “* (and naturally, 
T- tr, B T’), only the population grating preserves 
and the probing pulse k3, delayed by time T, allows one 
to measure the population grating relaxation [ 40,421. 

Thus, a four-wave mixing experiment will provide 
similar (but not identical) information as TRL exper- 
iments (solvation dynamics), if relatively long pump 
pulses rr, > T’ will be used. 

In our experiment the pump pulse duration fP B T ’ 

(t,, - 150 fs) . It is worth noting that resonance degen- 
erate four-wave mixing experiments with very short 
pump pulses fP - 10 fs have been conducted in several 
studies [ 15,49,50]. Since in these experiments r,, < T’, 
the signal must be different from our experiments as 
indicated in the former theoretical calculations 
[40,42]. The following simple arguments show the 
difference in signal behaviors in degenerate four-wave 
mixing experiments with r,, - 10 fs s a; I’* < T’ and 
tp s T’> u;li2, correspondingly. Relatively long 
pump pulses tp B T’ of frequency o create a hole in 
the initial thermal distribution relative to a generalized 
solvation coordinates in the ground electronic state 
(Fig. la) and, simultaneously, a narrow spike in the 
excited electronic state. These changes are measured 
by the probe pulse at the same frequency w. 

In the case of very short pulses tp < u; “* < T’ in 
the framework of the picture shown in Fig. la (vertical 
optical transitions), the spectral width of such pulses 
Aw - 1 ltp is sufficient to excite the whole ground state 
distribution and for the creation of a very broad spike 
in the excited state. The absorption energy of a very 
short probe pulse can be of very little sensitivity to the 
relaxation of the created broad spike in the excited state, 
especially in the case of tp -a~ u; ‘12. Such a situation 

(a) Salvation Cordinote 
n 
‘S 

,ds) 

QS 

Fig. 1. Potential surfaces of the ground and the excited electronic 
states of a solute molecule in liquid. (a) One-dimensional potential 
surfaces as a function of a generalized solvent polarization cmmli- 
nate. (b) Two-dimensional potential surfaces of the ground and the 
excited electronic states. 

is opposite to the case with long pulses 
tp s T’> ,;I’*. 
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We do not deliberately draw the picture correspond- 
ing to excitation by very short pulses, because for them 
( rP +z 2”) the picture of vertical transitions (Fig. 1) 
is incorrect [40,42,48]. Such pulses (tp -c T’) excite 
coherent effects (polarization grating) and, as a matter 
of fact, degenerate four-wave mixing with pulses 
tp -c T’ represents the case of stimulated photon echo 
spectroscopy [ 151. In this section we only wanted to 
emphasize the difference between degenerate four- 
waving mixing spectroscopy using short pulse dura- 
tions tp < T’ and long one rP * T ‘. In the next sections 
we shall term degenerate four-wave mixing spectros- 
copy with long pump pulses t,, s T’ as resonant tran- 
sient population grating spectroscopy (RTPGS) . 

We shall use some assumptions on calculating the 
cubic polarization P(3) + (r, t) from the general equa- 
tions (5)-(7). 

( 1) We shall use a Gaussian approximation for the 
value us representing the perturbation of the solvent 
nuclear system during the electronic transition. The 
Gaussian approximation is valid for the description of 
tbe intermolecular relaxation [ 43.5 11. The interaction 
energy of the solute molecule with its surroundings can 
be represented as the sum of the energy of interaction 
with the individual solvent molecules. Accordingly, the 
quantity us(t) can be also represented as a sum 
us(t) = Cj usj( t) of random variables usj( t) associated 
with the jth solvent molecule, correspondingly. The 
number of such solvent molecules (j) can be quite large 
(in the absence of specific chemical interactions). In 
addition the contributions Usj( t) can be considered for 
a liquid as weakly correlated. According to the central 
limit theorem of the probability theory [52], these 
properties of usj( t) permit one to consider the magni- 
tude us(t) as a Gaussian stochastic function [ 5 I]. 

In this case the four-time correlation function Ks( 0, 
tl,t2,t3) (J3q.s. (7),(g)) canberepresentedasfollows 
[ 40,44-46] ; 

WI tl, b, t3) =exptgdt3 -t2) +gdh) 

+gs(~z -4) -gs(f2) -gs(t3 -4) +gsct311, (9) 

where 
, 

gs(t) = -fi-2 
I 

dt’ (t-r’)(dO)u,(r’)), 
0 

(us(w4dt) > =fc2a2sS(t) . (10) 

S(t) is the solute-solvent correlation function, 
a,, = (ug (O))n -2 is the contribution of the solvent to 
the second central moment of both the absorption and 
the luminescence spectra. 

We shall consider the translational and the rotational 
motions of the liquid molecules as classical, at room 
temperature, since their characteristic frequencies are 
smaller than the thermal energy kT. The solvent con- 
tribution w,, to the Stokes shift of the equilibrium spec- 
tra of the absorption as well as the emission is of the 
order of lOOOcm_‘. For the classical case we have 
[43,51,53] 

a, = o,,kTlh . (11) 

Let us denote by TS the characteristic decay time of the 
“intermolecular” correlation function (us(O) us(t)). 
In any case 7s>,lO-i3s [13]. Since a~“2~1014~, 
the parameter a,$> lo2 B 1. For this case we can 
write [ 40,44-46] 

&(O, 9, 71 +T2+T3r T2+73) 

=exp(-ta,[r~+ri:-2r1r3S(r2)]}, (1W 

KS*@, 73, T2+T3, Tl +T2+T3) 

=exp{-fg2s[r:+r:+2r,r3S(r2)]), (12b) 

&(o, T2+T3r Tl +T2+T3, 73) 

=ewiidl -S(T~)I 1 

xKS(o~ T3, T1 +T2+T3r T2+T3), 

K,*(O, Tl +T2+T3. T2+73, 73) 

( 1W 

XK,*(O, 73, T2+T3, 71 +T2+T3) . (13b) 

(2) For simplicity, we shall also use a Gaussian 
approximation for the quantity uM representing the per- 
turbation of the molecular nuclear system during an 
electronic transition. Such an approximation is correct 
for harmonic molecular vibrations in the case of a linear 
electronic vibrational coupling, and hence the absorp- 
tion and emission spectra reduces to mirror symmetri- 
cal spectra. 

In a Gaussian approximation the four-photon corre- 
lation functions KM( 0, t,, t,, t3) (Eqs. (7), (8)) are 
also determined by Eq. (9) where one has to replace 
the quantities gs(t) and (us(O) by gM(t) and 
(uM(0)uH(t)), correspondingly. It is worthwhile to 
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note that Eq. (9) is also correct in the case of the non- 
Gaussian contribution to the quantity u. However, such 
contributions must be small. Non-Gaussian contribu- 
tions to Us can be determined by the quadratic elec- 
tronic vibrational interaction and anharmonicity. 
However, for the So+S1 optical transition in large 
molecules, such effects are usually small in comparison 
with the linear electronic vibrational coupling and 
therefore in many cases perturbation theory is sufficient 
to calculate their contributions. 

The assumption that Up is Gaussian is not obligatory. 
The generalization for the case of an arbitrary nature 
of UM will be published elsewhere. 

(3) Numerous experiments [54-561 show that the 
Franck-Condon molecular state, achieved by an optical 
excitation, relaxes very fast, and the intramolecular 
spectra spectrum forms within 0.1 ps. Therefore, we 
shall consider that in our experiments, the intramolec- 
ular relaxation takes place within the pulse duration 
(tp= 15Ops) . *’ More exactly, there are a fast and a 
slow steps in the relaxation of a Franck-Condon state. 
The faster component is mainly determined by the 
intramolecular relaxation while the slower step is deter- 
mined by the intermolecular relaxation. This assump- 
tion is not critical for the theory. It is necessary only 
for carrying out specific calculations. 

It follows from Eqs. ( 12) and ( 13) that the inter- 
molecular relaxation is described by the correlation 
function S( TV), and the upper boundary values for the 
times T, and ~~“a= - “*. Therefore, we can equate 
71 = 73 5: 0 in the arguments of the field functions 8,, 
8,,,,, Z’,,,” in Eq. (5) [ 39,40,57]. In addition, the time 
7* is of the order of the intermolecular relaxation time 
TV. The intramolecular functions ghl( t), which depend 
on r2, will attenuate to zero in accordance with the 
assumption that the intramolecular relaxation is faster 

“’ This assumption might be wrong for slow isomerization and con- 
former intramolecular transitions as well as for low frequency intra- 
molecular vibrations [56]. However, the contribution of low 
frequency intramolecular vibrations to the whole attenuation of a 
nonequilibrium state was found to be 20 times weaker than the fast 
component with a decay time of 60 fs attenuation [56]. The contri- 
bution of these low frequency vibrations to the signal can be 
explained by non-Condon mechanisms [ 571. As to isomer and con- 
former transitions, for LDS dyes the isomerization time is rather long 
( 2 50 ps). We shall discuss in detail this issue in the discussion 
section of the paper. Concerning the two stages of a molecular rclax- 
ation in solutions (fast-intramoleculru and slower-intermolecular 

one) see refs. [ 55,581. 

than the intermolecular one. Keeping this in mind, we 
can write the quantities F, and F2 (Eqs. (6)) in the 
form, using Eqs. (12) and (13): 

F~.2=Iexpkd--~dl 

+expIg,(7,)+iw,,[1-S(T2)l) 

Xexp( -sa2s[;:+~~r27,~3S(72)] 

+&.I(*%)} 9 

where 

(14) 

gM(t) = -h-* dt’ (t-t’)(~&O)u~(f’)) 

0 

is the logarithm of the characteristic function (Fourier 
transformation) of the “intramolecular” spectrum of 
one-photon absorption after subtraction of a term which 
determines the first moment of the spectrum. 

We can integrate the right-hand side of Eq. (5) with 
respect to 71 and 73, using (14) and the approximate 
independence of the fields 8, on these time arguments. 
Using Eqs. (4)) (5), and ( 14)) we obtain for the signal 
excited by nonoverlapping pulses which are short with 
respect to the intermolecular relaxation time 

Jo -exp( -27/T,) IA(T) I*. (15) 

The term exp( - r/T,) describes the attenuation of 
Pc3)+ due to the destruction of the grating based on the 
population of the vibrationally relaxed excited elec- 
tronic state. The term 1 A( T) I* describes the contribu- 
tion of the solvation dynamics to the time evolution of 
the signal. 

Let us consider the main physical processes, occur- 
ring in a solvating system under a laser excitation (Fig. 
1) . The pump pulses of frequency w create a hole in 
the initial thermal distribution relative to the general- 
ized solvation coordinate in the ground electronic state 
and, simultaneously, a spike in the excited electronic 
state. Apparently, such formations have a space mod- 
ulation N exp [ - i( R, - k,) l r] . These distributions 
tend to the equilibrium point of the corresponding 
potentials over time, and are also broadened during 
their movements. These changes are measured by the 
probe pulse delayed by a time 7 relative to the pump 
pulses. 
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Let us adduce at first the formula for A( T) without 
taking into account the intramolecular degrees of free- 
dom [ 401: 

A(T) -G,(~-~,,) 

x 
( 
F&W-- %, 7) +&Ao- qo, 4 

. A- [X&w- 
+‘J;; 

%, 7) +&q(w--@,, 711 , 
1 

(16) 

where “e” means the equilibrium value. The formula 
completely corresponds to the physical processes tak- 
ing place in solvation of the system considered before. 
The value of A ( 7) depends on changes related to none- 
quilibrium solvation processes in both the Fa,rp absorp- 
tion (a) and the emission (cp) spectra [ 401, 

= &j 
expI-[w-w,,(7)12/2a(7)}, 

(17) 

at the active pulse frequency w, as well as on the cor- 
responding changes in both the spectra of the refraction 
index Xs_,( w - w,,~, 7). Xs,, are related to Fsa,rp by 
the Kramers-Kronig formula, and have the following 
form [ 401: 

where 

x 

Erfi(x) = 
I 

exp(y*) dy . 
0 

As can be seen from Eq. (17), the changes in both 
spectra FSn,+, at each instant in time T are Gaussian 
functions with time dependent width proportional to 
[2a(t)]“2 

U(T)=U2s[1-S2(T)]. (18) 

Thus, as follows from Eq. ( 18) the width of the light- 
induced changes in both spectra are small for small 
delay times T (S(T) = 1) . The hole and the spike dis- 

tribution broaden in time relative to the solvation coor- 
dinate (Fig. la). 

The detuning o - O_,(T) of Fs_ are functions of 
the delay time T [ 401: 

W,(r) =%I -I- (o-%,)s(r) 9 

W~(T)=(W~,-W~~)+(W--W~~+OS~)S(T). (19) 

The detuning o - w,( T) is connected with the motion 
of the hole in time, and the detuning o - o,J T) depends 
on the motion of the spike (Fig. la). The values 

Xs,, $o( w - %.,* T), which are related to FSa+,( w - w,,,, 

T) by the Kramers-Kronig formula, display the corre- 
sponding changes in the index of refraction. 

Now, let us take into account the intramolecular 
vibrations. In this case the adiabatic potentials will be 
represented by hypersurfaces (Fig. lb). The corre- 
sponding absorption and emission spectra will be rep- 
resented by the convolutions 

= I do’ FM(o’)Fs,(o-yl -to’), (204 

= I dw’ FM( w’) F,,( w2, - w,, - w - w’) . 

(2Ob) 

The shape of the “intramolecular” spectrum FM( w’) 

is determined schematically by the 1-D potentials 
U, ( QM, 0) and UF”< QM) (Fig. 1 b) that are obtained 
by the intersection of the hypersurfaces U2(QM, Q,) 
and U, ( QM, Qs) by a vertical plane passing through 
the “molecular” coordinate QM: 

FM(w’) = (27~) -’ dtexp[g,(t) -iw’t] . (21) 

The “intermolecular” spectrum F,,( w - w2, - w’) is 
determined by “1-D” potentials that are obtained by 
the intersection of the hypersurfaces by a vertical plane 
passing through the solvation coordinate Qs. The situ- 
ation is similar for the emission spectrum. Typical 
“intramolecular** and whole spectra are shown in Fig. 
2. 

We now calculate A( T) in the general “2-D” case 
where both the intramolecular and intermolecular con- 
tributions are taken into account. The calculation is the 
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CQJ-Wel)/Jk 2s 

Fig. 2. The shape of the “intramolecular” spectra F,,,( 0’). 1 and 2 
are the equilibrium luminescence and absorption spectra of a mole- 
cule, respectively, when the solvent contribution from the solvent is 
absent; 3 and 4 are the equilibrium spectra of a molecule in solution. 
The arrow shows the relative position of excitation frequency o for 

the four-photon signal calculation (Fig. 3). 

generalization of the results [40] for the case of an 
arbitrary spectrum FM( w’), corresponding to the reor- 
ganization of the ultrafast intramolecular degrees of 
freedom during the electron transition. 

In the general case the value of A( 7) is represented 
by the 2-D integral: 

A(r) = 
II 

do’ dw” FM( w”)F”,,( w- y1 - w”) 

x 
( 
Fs,( w - %, 7) + Fs,( w - WC”’ 7) 

.2 [XsJo- 
+l\r;; 

%, 7) +&Q(~-~~9 711 9 
1 

(22) 

which does not reduce to the product of the one-dimen- 
sional integrals (according to Eq. (20) ) . The reason is 
that the frequencies w_, in Eq. (22) are functions of 
both CM’ and w”: 

0,(7)=(02, +o’)+(w-Uzi -o”)S(r), 

q( 7) = (w21 - 0’ - %) 

+(o-yl -w”+ws,)s(7). (23) 

The physical reason for such a dependence is given by 
the following arguments. Let us return to Fig. la. The 
situation that is shown in this figure is characteristic 
also for the “2-D” case, however, it is true only for the 
intersections of hypersurfaces by the vertical plane 
passing through the coordinate Qs (Fig. 1 b) . There- 

fore, any distribution shown in Fig. la will be accom- 
panied by the equilibrium distribution with respect to 
the “intramolecular” coordinate QM. 

Let us consider for the definition only the processes 
corresponding to the second and the fourth addends in 
Eq. (22). The pump pulses act along the transition (Y 
between the “plane” potentials U,(QM, 0) and 
UF( QM) (Fig. 1 b) , bearing the spike of the distribu- 
tion on the bottom of the Franckxondon potential 
tYF( QM) (point A) due to the instantaneous intra- 
molecular relaxation. If the delay time r of the probe 
pulse is small with comparison to the relaxation time 
with respect to the coordinate Qs, the probe pulse will 
act also between the potentials UF( QM) and U, ( QM, 
0) and, correspondingly, the spectra FM( w’) and 
FM( 0”) in Eq. (22) will be strongly correlated. For 
large delays r, the spike will relax to the equilibrium 
state (point B) . Therefore, the probe pulse will probe 
a peculiarity in the range of the pair of potentials: 
U2( U,, ds) and tYF( QM) (the transition cp) . The cor- 
responding spectra FM( o’) and FM( 0”) will not cor- 
relate. In this case the double-integration reduces to the 
product of 1-D integrals, i.e. to the product of the cor- 
responding equilibrium spectra. 

Figs. 3 illustrate the time behavior of the signal Js( T) 
that was calculated by formulae ( 15)) ( 17)-( 23). The 
shape of the “intramolecular” spectrum FM(&) is 
modeled by a “smoothed’ ’ dependence of one optically 
active intramolecular vibration of frequency o, 
[59,60]:F,(o’)-S”lr(n+l) wherer(x+l) isthe 
gamma-function, x = ( w’ - o,,) / %, oe, = (Et + 
(Vf) -Ef - (Vf))lh is the frequency of the purely 
electronic transition of a molecule in solution. We 
used the following values for the parameters: 
c&~cT~)-“~=~, S= 1.5, ~a(2a,,)-“~= 1.14. The 
shape of the “intramolecular” spectrum FM(w’) for 
these parameters is shown in Fig. 2 in the form of the 
equilibrium spectra F “,( w - to,,) and F “,( a~,, - to) 
when the contribution from the solvent is absent. 
F “,( to- w.,) and F “,( w,, - o) are determined by for- 
mulae (20) for the substitutions %, + w,,, us,= 0, 
F,, --, 6( o - wc, - w’) and Fsv+ S( co,,- w- to’), 
6(x) is the &function of Dirac. ‘Ihe equilibrium spectra 
of the molecule in solution F “,( o - 02,) and 
F “,( y, - us, - o) are also shown in Fig. 2. 

It follows from Eqs. ( 15) and (22) that the signal 
Js( 7) depends on the excitation frequency o. We chose 
o = o,, + ws,/2, which approximately corresponds to 
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Fig. 3. Model calculations of the RTGS signal: (a) the solvation 
correlation function consists of a Gaussian followed by three expo- 
nential decay (Eq. ( 17a) ) , note the curves are on a logarithmic scale. 
(b) the correlation function corresponds to a Brownian oscillator 
model for the liquid behavior (Eq. (17b)); T,=2OOfs, TJ7,,=m. 
(a) a,T~=7.7016, a,T,=0.33, a5To=0.04, a,=0.3, 

a,=a,=a,=0.2,~,7,=0.00074; (b) r~,,=l. 0~=2.83. 

m 
the experimental situation (see below). The excitation 
frequency w is also shown in Fig. 2. 

We used two forms for the correlation function S(t) , 

S(t) =a2 exp( -a3t2) 

AT(T) - -Re dt E,,,(t - 7) 

+(l-a*-a,-~,-a,) exp(-u,t) 

+a, exp( -a& +a6 exp( -a+) 

+a, exp( -a& 

and 

(24a) 

x $ [P(j)+ (t) exp( - iwz) ] . 

For the above-mentioned assumptions we obtain 

s(t) =exp( -r(t() 

X [cos(f&) +(IVi2) sin(Qt])] , Gab) 

corresponding to a Brownian oscillator [ 13,45,46,61- 
631. 

AT(r)-wexp( -T/T,) ReA(T) , (26) 

where A( T) is determined by Eq. (22). The compari- 
son of Eq. (26) for AT(T) with Rq. (15) for Js( T) 
shows that the signal in pump-probe spectroscopy is 
determined by the same physical processes as for 
RTPGS. However, in contrast to the latter, AT(T) does 
not depend on the refraction index X,,, spectra. 

The first addend in expression (24a) for the first Comparison of RTPGS with TRL spectroscopy. The 

correlation function corresponds to a fast Gaussian relaxation processes of an excited molecule are 

component, observed in ref. [ 121. The second one cor- observed by both techniques, the TRL and the TRPGS. 
responds to the relatively fast exponential component Since the signal in TRF’GS is determined by the pop- 
with an attenuation time of 200400 fs observed in ref. ulation grating (which includes the contribution of both 
[ 12 ] and in our experiment (see below). The third the space modulation of the electronic level populations 
component corresponds to a slower attenuation with a and the space modulation of the vibrationally nonequi- 
decay time of the longitudinal relaxation r,_. It is worth librium populations), it must be closely related to the 

noting that such a division by different contributions to 
the correlation function is purely formal, and is used 
here to impart the realistic form of the correlation func- 
tion. As a matter of fact, both the short- and the long- 
time components of the correlation function are 
manifestations of one physical process. We shall dis- 
cuss this issue in more detail below. We also showed 
in Figs. 3 the time dependence of the correlation func- 
tions S(T), used for the calculation of corresponding 
signals Js( T) . 

One can see that the dependencies S(T) and Js( T) 
are very similar (but not identical), and the signal Js( T) 
reflects the fine details of S( T) . Thus, the RTF’GS can 
be used for the ultrafast study of the solvation dynam- 
ics. 

The dependence of the signal Js ( T) on the excitation 
frequency 0 is investigated in ref. [ 641. 

Comparison of RTPGS with pump-probe spectros- 
copy. In transmission “pump-probe” experiments 
[ 561 the dependence of the change in the sample trans- 
mission AT on the delay time T between pump and 
probe pulses is measured. This dependence is given by 
[48,571 
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TRL signal that is also determined by the electronic 
and the vibrational populations. 

The equation describing the dependence of the TRL 
Gf( V, w, T) on the radiated frequency V, the excitation 
frequency w, and the time rafter excitation is given by 

[511 

Gf( V, w, r) = 
II 

do’ do” Fi,,( o’)&,( 0”) 

~F&(w-%, -w”)Fsv( v-q, r) . (27) 

Eq. (26) is correct when the intramolecular relaxation 
is much faster than the solute-solvent one [ 5 11. One 
can easily see that Eq. (26) coincides with the second 
term in the right-hand side of Eq. ( 22) for A ( T) when 
v= w. Thus the transient luminescence spectrum pro- 
vides a contribution to the observed signal of RTPGS. 
We would like to emphasize, that the molecular model 
we presented is the same for RTPGS and TRL. 

There are three main differences between the RTPGS 
and the TRL spectroscopy. First in luminescence, the 
whole spectrum is measured while in RTPGS only the 
excitation frequency is monitored. Second, the RTPGS 
monitors both the excited state and the ground elec- 
tronic state relaxation. Third, in the RTFGS experiment 
the refraction index spectra of the ground and excited 
states also contribute to the signal. 

3. Experimental details 

The laser source consists of a cw mode-locked 
Nd: YAG laser (Coherent Antares) operating at 
76 MHz. A small portion of the 1.06 pm radiation 
( - 20 mW) is used to seed a cw Nd : YAG regenerative 
amplifier operating at 500 Hz. The regenerative ampli- 
fier output pulses of 1.1 mJ energy at 1.06 pm are dou- 
bled with a beta barium borate (BBO) crystal and reach 
and energy per pulse of 0.4 mJ at 532 nm. The doubled 
frequency output of the amplifier (70 ps full width half 
maximum) was used to amplify the ultrashort laser 
pulse 140 fs fwhm, 1 nJ generated by a synchronously 
pumped dye laser. The synchronously pumped dye 
laser (Satori, Coherent) utilizes a saturable absorber in 
combination with group velocity dispersion compen- 
sation prisms to achieve a stable pulse width of the 
order of 140fs. The dye amplifier consists of three 
flowing dye cells pumped by the regenerative amplifier 
second-harmonic pulse. With Kiton red dye the dye 

\ 

Fig. 4. The schematics of the optical setup for time-resolved degen- 
erate four-wave mixing experiments. BS: beam splitter. DL: delay 

line, SM: step motor. HR: high reflector. 

laser operates at 635 nm central wave length and the 
amplification is achieved by DCM dye to N 15 pJ with 
a pulse width comparable with the non-amplified pulse. 

The four-wave mixing optical setup is shown in Fig. 
4. The amplified ( 15 pJ) 140fs laser pulse was split 
into three beams, Optical delay lines were used to over- 
lap in time the pump beams and to control the time 
delay of the probe beam. The three beams (parallel 
polarization) were focused onto the sample by a single 
lens of 50 cm focal length. In DFWM experiments the 
signal beam exit the sample at a unique direction 
k, = (k, -k,) +k, and therefore it is easily separated 
from the three generation beams. 

LDS 750 (styry17) was purchased from Exciton and 
was used without further purification. The solvents 
used were either analytical or of a spectroscopical 
grade. Samples were circulated in a flowing cell of 
1 mm pathlength. 

4. Experimental results 

The time-resolved four-wave mixing signal was 
measured by the experimental setup shown in Fig. 4. 
The time dependent four-wave mixing signals of LDS 
750 in methanol, l,Zethanediol, 1,3-propanediol and 
1,6butanediol are shown in Fig. 5. The absorption and 
emission spectra of LDS 750 in 1,3-propanediol are 
shown in Fig. 6. The signals were collected with a 
relatively low time resolution by scanning the probe 
beam delay stage at 0.5 ps steps. As seen from Fig. 5 
the signal decay curves for LDS 750 in these solvents 
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Fig. 5. Degenerate four-wave mixing signal of LDS 750 in various 
solvents as a function of time delay between the pump pulses and 
the probe pulse: from top to bottom, 1,Cbutanediol. 1,3-propanediol, 
1,2ethanediol and methanol. 
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Fig. 6. The absorption ( 1) and luminescence (2) spectra of LDS 
750 in 1,3-propaaediol. 

are nonexponential and consist of several time 
domains. The long life time component in methanol 
exhibit an exponential decay law with corresponding 
life times of 120~s. This life time we attribute to the 
electronic population grating attenuation. The fluores- 

cence lifetimes of LDS 750 in methanol l,Zethanediol, 
1,3-propanediol and l&butane&o1 are 240 ps [ 111, 
600,900 and 1100~s respectively. The factor of two 
between the electronically excited state lifetime meas- 
ured by luminescence technique and the longest decay 
of the DFWM signal arises from the following argu- 
ment. The signal in DFWM experiments is proportional 
to (P (3) + I* (P (3) is the cubic polarization). If popu- 
lation gratings are formed in such experiments then 
Pc3)+ decay as exp( - T/T~) where T, is the excited 
state lifetime. However, the DFWM signal decays as 
exp( -27/T,). Thus the decay rate constant of a pop- 
ulation grating in a DFWM experiment is twice as large 
as the actual decay rate constant of the excited state 
population. 

The shorter time components of the DFWM signal 
of LDS 750 in methanol, and the diols are seen on a 
shorter time scale with an expanded time resolution 
( 100 fs time steps) in Fig. 7. Each of the decay curves 
shown in Fig. 7 consists of three time components. We 
attribute all these time components to the solvation 
dynamics of LDS 750. 

The longest component can be approximately fitted 
to an exponential decay with decay times of 5, lo,30 
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Fig. 7. DFWM signal of LDS 750 in four solvents measured by delay 
line steps of 100 fs. 
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and 70 ps for methanol, 12-ethanediol, 1,3-propane- 
diol and 1,4-butanediol, respectively. These relaxation 
times correspond to the longitudinal dielectric relaxa- 
tion time 7L of the particular liquid. The dielectric relax- 
ation properties of monoalcohols were studied quite 
extensively [ 65,661. While the dielectric relaxation 
time rn is obtained for measurements that senses the 
orientational motion of the liquid molecules at constant 
field, the longitudinal relaxation time rL provides the 
liquid relaxation time at constant charge. The two relax- 
ation times are related by a simple formula ~~ = ( E,/ 
&s) rn where .ss and E, are the low and high frequency 
dielectric constant respectively. The constant charge, 
longitudinal relaxation time is more appropriate to 
compare with the solvation dynamics of excited solute 
molecules [ 1,3,6]. 

The dielectric relaxation properties of neat normal 
primary alcohols present a complex behavior. This 
complexity is attributed to the hydrogen bonding 
between adjacent molecules. The relatively long relax- 
ation time is attributed to the breaking of hydrogen 
bonds in molecular aggregates followed by ROH rota- 
tion. In addition to the long relaxation component, 
shorter relaxation times are observed in alcohols. Since 
the dielectric relaxation measurements are frequency 
limited by the instrument response, the high frequency 
dielectric response obtained in these measurements is 
inaccurate and often not available. Garg and Smyth 
[ 651 analyzed their data for propanol to dodecanol in 
terms of three different relaxation times for each alco- 
hol. They explained the intermediate relaxation time as 
arising from rotation of a free monomeric molecule. 
The shortest relaxation time is that for the relaxation of 
the hydroxyl group by rotation around its C-G bond. 
It was estimated to be -2 ps and was found to be 
insensitive to the particular liquid. 

The dielectric spectra of diols are unsymmetrical. 
The Cole-Cole plots are skewed ones over most of the 
dispersion range [ 671. Various relaxation model func- 
tions have been assumed in earlier work on diols. In 
early investigations of dielectric spectra of liquids few 
frequencies and rather limited frequency ranges have 
been used to characterize the spectra and therefore the 
differentiation between model functions was difficult. 
In more recent studies of linear 1 ,Zdiols by El-Samahy 
and Gestblom [ 681 (using dielectric time domain spec- 
troscopy) and Jordan et al. [ 691 (using spot frequency 
domain measurements between 10 MHz and 70 GHz) 

it was found significantly better fit to their data assum- 
ing two Debye relaxation times rather than model func- 
tions like Cole-Davidson distribution or Cole-Cole 
distribution. The two dielectric relaxation times for 
1 ,Zethanediol are 140 and 20 ps [ 681. The long relax- 
ation time is approximately the same as for ethanol. In 
monoalcohols like methanol, rn2 the shorter decay time 
is generally interpreted in terms of a monomer reorien- 
tation while rni represents a cooperative motion con- 
nected with the breakup of hydrogen bonds inside a 
polymeric alcohol unit. The similarity in the dielectric 
spectra of mono and dialcohols indicates analogous 
behavior. However, in diols rD2 increases more pron- 
ouncely with the molar mass than for monoalcohols. In 
contrast the longer relaxation time rul is less sensitive 
to the chain length than the corresponding monoalco- 
hols. 

The short time components of the DFWM signals of 
LDS 750 in methanol and the dials solutions are shown 
in Fig. 8, using 20 fs time steps of the probe beam delay 
stage. The DFWM signal for both solvents consists of 
an ultrashort spike followed by a - 400 fs (methanol) 
and a < 400 fs decay for the diols. The initial Gaussian 
shape spike is due to a contribution of two superim- 
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Fig. 8. High time resolution DFWM signal of LDS 750 in four 
solvents measured with time steps of 20 fs. 
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posed components. A coherent contribution arises due 
to repumping of energy from the pumping beams to the 
probe beam and is often found in DFWM experiments. 
The coherent spike fwhm is determined by the laser 
pulse correlation function and hence by the laser pulse 
width. The coherent spike prevents us for the time being 
to resolve accurately the first - 150 fs of the solvation 
dynamics. 

The ultrafast solvation dynamics of LDS 750 in ace- 
tonitrile was studied by Rosenthal et al. [ 121 using 
time resolved luminescence technique with - 125 fs 
fwhm instrument response function. The solvation 
response consisted of two distinctive parts. A fast initial 
decay accounted for - 80% of the amplitude was fit by 
a Gaussian. The slower tail decayed exponentially with 
a decay time of 200 fs. In a subsequent study, Cho et 
al. [ 131 measured the time-dependent nonresonant 
optical Kerr effect in neat acetonitrile liquid. Both 
experiments have shown the biphasic character of the 
solvent response. A vibrational model was used to 
describe quantitatively the solvation and the neat liquid 
dynamics [ 131. A number of Brownian oscillators with 
frequency distribution of the vibrational modes pro- 
duce a very good fit of both experimental data. 

The shortest time component has a Gaussian shape 

(see Fig. 8) but cannot be time resolved since the 
coherent spike is superimposed on it. Also the pulse 
duration in our experiment is longer than the predicted 
Gaussian component of the solvation. We now wish to 
compare the solvation dynamics on the short time scale 
< 2 ps of LDS 750 in methanol, and the diols. On this 
short time scale the solvation dynamics in all solvents 
is quite similar. The relative height of the coherent spike 
superimposed on the Gaussian compound versus the 
subsequent total signal is the same in all three liquids 
(see Fig. 8). The decay time of the exponential com- 
ponent is - 400 fs in MeOH and longer in diols. This 
decay time is about twice as longer than in acetonitrile 
[ 12,131. It is interesting to note that while the longer 
solvation components in these liquids are strongly 
dependent on the particular liquid, the ultrafast solva- 
tion dynamics is almost identical (within the S/N ratio 
of the experimental data). 

However relative amplitude of the - 400 fs com- 
ponent is - 0.4 for methanol and drastically smaller in 
the diols (0.2,O. 15 and 0.1 in 1,2-ethanediol, 1,3-pro- 
panediol and 1 ,Cbutanediol, respectively). 

The solvation dynamics of probe molecules in asso- 
ciated liquids is quite complex and spans several time 
decades. In order to follow accurately the solvation 
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Fig. 9. The solvation correlation function of LDS 750 in 1,4-butanediol measured by time-resolved emission technique. 
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dynamics on the subnanosecond time scale we meas- 
ured the time resolved fluorescence of LDS 750 in 
methanol and in the diols. Time correlated single pho- 
ton counting technique with 50 ps instrument response 
was used to follow the solvation correlation function 
s(t) (see Eqs. (23) and (27)) at times longer than 
2 30~s. The combination of both methods RTPGS 
limited by our delay lines to time shorter Q 200 ps and 
the TCSPC limited by the instrument response > 30 ps, 
increases the time range, the time resolution and the 
signal to noise ratio of the experimental dam. Fig. 9 
displays the solvation correlation function obtained 
from the time resolved spectra of LDS 750 in 1,4- 
butanediol constructed from TCSPC data. The approx- 
imate solvation function from - 100 fs to - 1 ns on a 
logarithmic scale is shown in Fig. 10. 

Using the similarity of the RTPGS signal and the 
correlation function (Fig. 3), the signals shown in Fig. 
10 were constructed as follows. The four-wave mixing 
signals with high, medium and low time resolution of 
a particular solvent (see Figs. 57 and 8) were added 
together to construct the signals shown up to - 100 ps. 

1.2 Ethanediol 

1.3 Propanediol 

1.4 Butanediol 

1 10 100 1000 
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Fig. 10. Solvation dynamics of LDS 750 in thme dials presented on 
a logarithmic scale. Note: The solvation dynamics is displayed on 
four decades of time. 

The time resolved emission of LDS 750 at 650 nm was 
added to complete the signal up to 1000 ps (we used 
the single wavelength method for the determination of 
the correlation function [ 741). The total signal (in 
order to exclude the attenuation) was then multiplied 
by exp( t/rl) where T, is the excited state life time and 
finally the relaxed emission was subtracted from the 
signal. The processes signals displayed in Fig. 10 pro- 
vide the high time resolution necessary to define the 
initial solvation components as well as the slowest com- 
ponents in one curve. 

The solvation dynamics shown in Fig. 10 is complex 
and it occurs on four time decades < 100 fs to several 
hundred picoseconds. For LDS 750 in 1,4-butanediol 
using a Gaussian and four exponential fit the charac- 
teristic times involved in the solvation dynamics are: a 
Gaussian component with a relative amplitude 0.3 and 
time of < 100 fs, a small component with an amplitude 
of 0.1 and a decay time of - 600 fs followed by 5 ps, 
70~s and - 250 ps components with amplitudes of 
-0.15,0.15 and 0.15 respectively. 

5. Discussion 

In the present study we continue our efforts to under- 
stand the solvation dynamics of large probe molecules, 
To probe the relative merits of viscosity and solvent 
relaxation time in solvation dynamics of LDS 750, we 
have utilized the fact that in diols the two parameters 
do not scale linearly with the corresponding values of 
monoalcohols. The diols have larger dipole moment 
and larger viscosities than monools ( 1 ,Zethanediol, p, 
2D, 7, 19 cP; ethanol, ~1, 1.7D, q, 1.2 cP) . In contrast, 
the longer dielectric relaxation times measured by elec- 
trical relaxation methods are about the same ( 140~s 
for 1 ,Zethanediol and 120 ps for ethanol [ 68-711. In 
the study of solvation dynamics and intramolecular 
electron transfer processes, monoalkanols scale almost 
linearly with viscosity and the relative utility of the two 
parameters in evaluating solvation dynamics was not 
easily clarified. 

Time resolved four-wave mixing method provided 
the solvation dynamics of LDS 750 on the short and 
medium time scales - 100 fs-200 ps. The four-wave 
mixing data between -50 and 200 ps match quite 
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nicely to the solvation dynamics measured by time 
resolved fluorescence measurements (see Fig. 10). The 
solvation dynamics complexity is clearly seen in Fig. 
10. For simplicity, we analyzed the experimental 
curves by a Gaussian component followed by four 
exponents where the longest one we attribute to the 
excited state life time. 

In all solvents the superimposed coherent spike and 
the Gaussian component have the same relative ampli- 
tude -0.3. 

The relative amplitude of the first exponential com- 
ponent is strongly dependent on the solvent. For meth- 
anol, the relative amplitude is -0.4 while for 
1,4-butanediol - 0.1. The decay time constants of the 
shortest exponent are 400-600 fs. It is difficult to deter- 
mine the exact rate since the relative amplitude is small 
and the exponential analysis serves only as a guideline 
to quantify the complex relaxation. 

As mentioned previously, the dielectric relaxation 
measurements indicated that in monoalcohols ultrafast 
dielectric relaxations of the order of - 2 ps exists while 
for 1,2-ethanediol the shortest component found is 
- 20 ps. Our solvation dynamics experiments show 
that the time scale of the fastest solvation components 
for monools and diols are much shorter. In all solvents 
it consists of a Gaussian component of Q 100 fs fol- 
lowed by a - 400 fs exponential decay. Molecular 
dynamics simulations of solvation dynamics in meth- 
anol [29] have shown that the solvation dynamics is 
biphasic. A Gaussian contribution with < 100 fs is 
identified as arising from the inertial rotational motion 
of the solvent molecules. The second component is 
longer and approximately decays exponentially with 
400 fs decay time. Classical molecular dynamics sim- 
ulation of methanol [ 311 performed to much longer 
times ( 10 ps) than the solvation simulations work [ 291 
1 ps shows the long solvation component of 5 ps (found 
in our experiment) as well as the short components. 
The ultrafast solvation components can be deduced 
from far infrared absorption measurements [ 33,341. 
The Fourier transform of the far-infrared absorption 
line shape of neat acetonitrile and acetonitrile in other 
liquids shows both the Gaussian and the exponential 
components of the solvent orientational correlation 
function. The second exponential rate constant is 
strongly dependent on the solvent. For methanol it cor- 
responds to T,,,. In the diols the second exponent is 
followed by a longer decay which corresponds to the 

longest dielectric rehXatiOn the vD, IIIeaSUred by elec- 
trical measurements via the longitudinal relaxation 
time r,_= (&I&s) rn. 

Bearing in mind the possibility that two isomers of 
LDS 750 [72] exists, let us discuss this in the frame- 
work of our theory. The generalization of the theory 
for the case of a few isomers is direct. One must cal- 
culate the valuesAi( T) for each isomer, and the TRF’GS 
signal Js( 7) (Eq. (4) ) is given by 

Js(T) - c eXp( - T/T,,)Ai( T) ‘, 

i 

where Tii is the lifetime of the excited state for the ith 
isomer. One can also take into account the transitions 
between isomers, but they are relatively slow processes 
[ 721. We shall conduct such a generalization in the 
future. 

In this work we developed theoretically and experi- 
mentally the principles of a new method for the obser- 
vation of ultrafast solvation dynamics: the resonance 
transient population grating spectroscopy. Theoretical 
results reproduce the main properties of the experimen- 
tal curves. 

The theory presented in the paper connects a four- 
photon signal with the correlation function S(r) that 
describes the fluctuations of the value us(t) and the 
transient Stokes shift of the luminescence spectrum 
( w,J r) ) . The analytical form of S(I) can be arbitrary 
in principal. Its calculation is an independent problem. 

There are number of papers devoted to the calcula- 
tion of s(t). The model of the strongly overdamped 
Brownian oscillator [63&t] describes only the long- 
time (exponential) behavior of S(t). The use of a fie- 
quency distribution of the solvation modes in the form 
of Brownian oscillators [ 131 describes both the fast 
and the slow components of g(t). However, such a 
description is rather characteristic for polar crystals 
than for polar solvents, where the change of the polar- 
ization originates from the rotation of the molecules. 
The approach based on Kubo’s stochastic theory [ 191 
that describes both the short and the long components, 
seems to us rather attractive. However, an approach on 
the basis of the generalized Langevin equation [ 61,731 
is more consistent. On the basis of this equation we 
proposed before the non-Markovian model of an opti- 
cally active oscillator for electron transitions in mole- 
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cules [ 611. We shall use such an approach to describe 
the solvation correlation function S(t) elsewhere. 
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