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Abstract

We have studied the capabilities of intense ultrashort chirped pulses for controlling the long range electron transfer in systems
strongly coupled to a polar medium. We considered a two state electronic donor/acceptor system, possessing a large difference of
permanent dipole moments between donor and acceptor states, with relaxation treated as a diffusion on electronic potential energy
surfaces. This relaxation model has enabled us to trace continuously the transition from a coherent population transfer to incoherent
one. In addition to the field controlled electron transfer, we take into account a possibility of the direct optical transition between
electronic states under study as well. We have introduced the generalized Rabi frequency that enabled us to extend the concepts and
ideas of population transfer, developed for optical transitions, to the electron transfer (radiationless process) controlled with strong
electromagnetic field. We have shown that it is possible to realize the ‘‘radiationless’’ analogies to p-pulse excitation, adiabatic rapid
passage and pump–dump process. We have obtained a physically clear picture of the analogy to the adiabatic rapid passage for the
chirped controlled long-range electron transfer by studying vibrationally non-equilibrium populations behavior and careful exam-
ination of all the conditions needed for adiabatic rapid passage.
� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Controlling the electron transfer (ET) with strong
electromagnetic field was the topic of active research
during the last few decades [1–11]. All the systems dis-
cussed in this relation were characterized by a large dif-
ference of permanent dipole moments for different
electronic states. Interaction of strong electromagnetic
field with such systems leads to modulation of their
energetic spectrum by the field frequency x. This modu-
lation alters the relative arrangement of the configura-
tional surfaces corresponding to different electronic
states and may essentially change the electron transfer
rate due to its strong dependence on the difference in
the electronic state energies. It seems likely that this idea
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was first applied to the activation of radiationless tran-
sitions in large molecules [1–3] and in vibronic systems
with a degenerated excited electronic state [12] in seven-
ties. The efficiency of the energy spectrum modulation
depends on the value of the parameter z ¼ DDE=ð�hxÞ
[1–5,9] where DD = D22 � D11 is the dipole moment dif-
ference between initial and final states, and E is the
amplitude of electromagnetic field. For many complex
molecules the electronic excitation is characterized by
a change in the permanent dipole moment reaching 10
D. The activated radiationless transitions in these mole-
cules are quite competitive with the direct optical transi-
tions [2,3] though for large organic molecules z � 1.

After 20 years interest in systems under discussion
was resumed in the context of controlling the long range
ET in mixed-valence transition metal complexes with la-
ser field [4,6–8,10,11,13]. These compounds are prospec-
tive materials for creating optical and electronic devices

mailto:fainberg@hait.ac.il 


78 B.D. Fainberg et al. / Chemical Physics 307 (2004) 77–90
based on quantum size effects and tunneling [13]. For
mixed-valence transition metal ET complexes the per-
manent dipole moment difference between donor and
acceptor electronic states can be very large (�70 D)
[5,9]. At the same time the magnitude of an electroni-
cally off-diagonal matrix element in such systems is
much smaller and can be omitted [4,5]. Due to the large
permanent dipole moment difference, parameter z in the
last systems can be larger than 1 for the values of
E � 106 � 107 V=cm [4,5]. These field strengths are
smaller than those needed for the solvent dielectric
breakdown. The values of z J 1 determine the reso-
nance structure of the tunneling rate [4] and dramatic
variations in the frequency dependence of the absorp-
tion cross section as a function of laser intensity [5]. In
[9,10] the problem of external field control of non-adia-
batic ET and optical absorption of long range ET
systems in intense fields has been extended to the
solvent-controlled regime.

High field strength can be achieved, as a rule, in the
short pulse regime. Moreover, using short pulses in-
creases the value of the breakdown field. An additional
point to emphasize is the large progress in optical con-
trol of molecular dynamics by using chirped laser pulses
[14–32]. Ultrashort pulses intrinsically consist of a broad
range of frequency components. The relative phase of
these frequency components can be systematically chan-
ged by introducing positive or negative chirp. Chirped
pulses are very efficient for achieving radiation popula-
tion transfer in atomic and molecular systems. Experi-
ments on intense chirped pulse excitation of the laser
dye molecules in liquid solutions [27] showed a strong
dependence of the excited state population on the chirp
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Fig. 1. Diagrams of the intrapulse pump–dump process for negatively chirpe
the interaction of the excited molecule with light (s2) shortens for PC excitati
time arguments in accordance with the double-sided Feynman diagrams des
sign. The results of the above-mentioned experiments
have been explained in terms of the intrapulse pump–
dump process [17,22,27]. In the wave packet picture,
the first field interaction places amplitude on the S1 ex-
cited state (Fig. 1). This amplitude starts to slide down
the potential energy surface. A second field interaction
either can bring more amplitude up, creating population
in the excited state, or it can bring the amplitude from
the first field interaction back down to the S0, creating
a displaced hole in the ground electronic state. Since
the wave packet on S1 is moving from higher optical fre-
quencies to lower, the ground state population increases
for excitation by negatively chirped (NC) pulses. Thus, a
NC pulse creates a non-stationary ground state compo-
nent, while a positively chirped (PC) pulse increases the
excited electronic state population [27,30,33]. Incoherent
description of this effect in complex molecules in solu-
tion have been carried out in [33], using the picture of
‘‘moving’’ potentials.

The most effective population transfer between atomic
and molecular electronic states can be achieved by coher-
ent light-molecule interaction like adiabatic rapid pas-
sage (ARP) [21,34–37]. ARP is based on sweeping the
pulse frequency through a resonance. The mechanism
of ARP can be explained by avoided crossing of dressed
states as a function of the instantaneous laser pulse fre-
quency x(t) [34]. A scheme based on ARP is robust since
it is insensitive to pulse area and to the precise location of
the resonance. ARP in molecules in solution has been
studied in [37]. It has been shown in this work that relax-
ation does not hinder a coherent population transfer for
positive chirped pulses and moderate detunings of the
central pulse frequency with respect to the frequency of
ω(t-τ3)
ω(t-τ2-τ3)
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d (NC) pulse and positively chirped (PC) pulse excitation. The time of
on with respect to that for NC excitation. We used designations of the
cribing the intrapulse pump–dump process (see Fig. 6 of [37]).
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Fig. 2. Energy states of photosynthetic bacterial reaction center. The
donor–acceptor transition AD ! A�D+ occurs through two interme-
diate states: the optically excited state (AD)* and a higher intermediate
state, which are denoted as |1æ and |2æ, respectively.
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Franck–Condon transition. Moreover, under these con-
ditions the relaxation favors more efficient population
transfer with respect to the system with frozen nuclear
motion (without relaxation).

In the present work we intend to clarify the following
issues. Is it possible to realize analogies to pump–dump
process and ARP for the ET (radiationless process) con-
trolled with strong electromagnetic field? Can one
achieve a total population transfer to the acceptor state,
using the analogy to ARP? If yes, what are appropriate
parameters of such a field?

The objective of this paper is to answer all these ques-
tions. Such a purpose proposes a coherent description of
the ET under discussion that is beyond the scope of the
solvent-controlled regime studied in [9,10] for the CW
electromagnetic perturbation. We address our theory to
photosynthetic bacterial reaction centers and long-range
electron transfer systems. In addition to the field induced
ET, we consider also a possibility of the direct optical
transition between electronic states under study. Occur-
ring such simultaneous transitions has been predicted in
[3]. Therefore, the present paper can be considered as
extension of the theory [33,37] related to dynamics of
direct optical chirped pulse excitation of molecules in
solution to the ET problem and multiphoton resonances.

Some of the preliminary results in controlling long
range ET by intense ultrashort chirped pulses are pre-
sented in Conference Proceedings [38]. Here, we give a
full account of this study with essentially new results.

The outline of the paper is as follows. In Section 2, we
derive equations for the density matrix of a donor/ac-
ceptor system, possessing a large difference of perma-
nent dipole moments between the donor and acceptor
states, under the action of chirped pulses when the inter-
action with a dissipative environment can be described
as the Gaussian–Markovian modulation. In Section 3,
we formulate a number of approaches to the total model
of Section 2. In Section 4, we extend concepts and ideas
of optical population transfer to long range electron
transfer systems. In Section 5, we solve equations for
the total model derived in Section 2. In Section 6, we
present the calculation results and analyze the underly-
ing physics. In Section 7, we summarize our results. In
Appendix A, we show that the approximate ‘‘partial
relaxation’’ model of Section 3 can be obtained not
assuming the standard adiabatic elimination of the
momentum for the non-diagonal density matrix.
1 We thank Dr. M. Hayashi who has drawn our attention to the
reaction centers.
2. Derivation of basic equations

Let us consider a donor/acceptor system in a solvent
described by the zero-order Hamiltonian

H 0 ¼
X
n

jni En þ W BOnðQÞ½ �hnj; ð1Þ
where En is the energy of state n, WBOn(Q) is the Born-
Oppenheimer Hamiltonian of reservoir R (the vibra-
tional subsystems of a solute and a solvent interacting
with the electron system under consideration in state
n). The electronic state before the charge transfer is de-
noted as donor |1æ. We address our theory to both the
long range electron transfer systems like metal–metal
charge transfer complexes [13,39,40], and the photosyn-
thetic bacterial reaction centers [41]. For the first sys-
tems we study the direct transition |1æ ! |2æ where |2æ
denotes the state describing the electron on the acceptor
site. Similar to [4,5,9,13,39], we use a two electronic state
model (without bridging states). As to the photosyn-
thetic bacterial reaction centers, we consider the case
when the donor–acceptor transition AD ! A�D+ oc-
curs through the two intermediate states (see Fig. 2):
the optically excited state (AD)* and a higher intermedi-
ate state which are also denoted as |1æ and |2æ, respec-
tively. 1 Thus, populating state |2æ is favorable for the
donor–acceptor transition in the reaction centers. Below
we will centre on transition |1æ! |2æ, bearing in mind its
different meaning in the long-range ET systems and the
photosynthetic bacterial reaction centers.

The donor/acceptor system is affected by electromag-
netic radiation of frequency x

EðtÞ ¼ 1

2
~EðtÞ expð�ixt þ iuðtÞÞ þ c:c:; ð2Þ

where EðtÞ and u(t) are real functions of time, and u(t)
describes the change of the pulse phase in a time t. The
instantaneous pulse frequency is x (t) = x � (du/dt).

The influence of the vibrational subsystems of a sol-
ute and a solvent on the electronic transition can be de-
scribed as a modulation of this transition by low
frequency (LF) vibrations {xs} [42,43]. In accordance
with the Franck–Condon principle, an electronic
transition takes place at a fixed nuclear configuration.
Therefore, the quantity u(Q) =WBO2(Q) � WBO1(Q) �
ÆWBO2(Q) � WBO1(Q)æ1 is the disturbance of nuclear
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motion under electronic transition. Here, h in �
TrRð. . . qRn

Þ denotes the trace operation over the reser-
voir variables in the electronic state n

qRn
¼ expð�bW BOnÞ=TrR expð�bW BOnÞ; b ¼ 1=kBT :

Electronic transition relaxation stimulated by LF vibra-
tions is described by the correlation function K(t) =
Æu(0)u(t)æ of the corresponding vibrational disturbance
with characteristic attenuation time ss [33,43]. For broad
electronic spectra satisfying the ‘‘slow modulation’’
limit, we have r2ss2s � 1, where r2s = K(0)�h�2 is the
LF vibration contribution to a second central moment
of an electronic transition.

We suppose that �hxs � kBT. Thus {xs} is an almost
classical system and operators WBOn are assumed to be
stochastic functions of time in the Heisenberg represen-
tation. The quantity u can be considered as a stochastic
Gaussian variable. We consider the Gaussian–Marko-
vian process when K(t)/K(0) ” S(t) = exp(�|t|/ss). In this
case one can obtain for the elements of the density ma-
trix by the generalization of the equations of [10,33, 44–
48]

o

ot
q12ða; tÞ � iðx21 � aÞq12ða; tÞ

¼ �ði=�hÞ½W 11ðtÞ � W 22ðtÞ�q12ða; tÞ þ ði=�hÞ
� ½V 0

12 þ W 12ðtÞ�½q11ða; tÞ � q22ða; tÞ� þ L12q12ða; tÞ;
ð3Þ

o

ot
qjjða; tÞ ¼ ð�1Þjð2=�hÞIm ½V 0

21 þ W 21ðtÞ�q12ða; tÞ
� �

þ Ljjqjjða; tÞ; ð4Þ

where j = 1, 2; V 0 describes non-radiative ET between
localized diabatic states 1 and 2, W = �D Æ E(t) is the
operator of electric dipole interaction, D is the dipole
moment operator, a = �u/�h, x21 is the frequency of
Franck–Condon transition 1 ! 2, xst is the Stokes shift
of the equilibrium absorption and luminescence spectra,
dij is the Kronecker delta, �hbr2s = xst, b = 1/(kBT). The
terms

Ljj ¼ s�1
s 1þ a� dj2xst

� � o

oa
þ r2s

o
2

oa2

� �
ð5Þ

on the right-hand side of Eq. (4) describe the diffu-
sion with respect to the coordinate a in the corre-
sponding effective parabolic potential [33], L12 =
(L11 + L22)/2.

The partial density matrix of the system qij (a, t) de-
scribes the system distribution with a given value of a
at time t. The complete density matrix averaged over
the stochastic process which modulates the system en-
ergy levels, is obtained by integration of qij (a, t) over a
(the generalized solvent coordinate)

hqiijðtÞ ¼
Z

qijða; tÞda; ð6Þ
where diagonal quantities Æqæjj(t) are nothing more nor
less than the populations of the electronic states:
Æqæjj(t) ” nj, n1 + n2 = 1.

2.1. Interaction picture

Let us separate out the diagonal part Wd(t) of W(t):
W(t) =Wd(t) + Wnd(t), and switch to the interaction
picture with the help of the unitary transformation
[1–3,9] Bint ! S�1BS. Here, the unitary operator S sat-
isfies the equation

i�h
dS
dt

¼ W dS; S�1ðt ¼ 0Þ ¼ 1: ð7Þ

The solution of Eq. (7) is

Skk0 ¼ ðS�1
k0kÞ

	 ¼ dkk0 exp �ði=�hÞ
Z t

0

W d
kkðt0Þdt0

� �

¼ dkk0 exp

�
ði=�hÞDkk

Z t

0

dt0Eðt0Þ cos½xt0

� u t0ð Þ�
�
: ð8Þ

Eqs. (3) and (4) take the following form in the interac-
tion picture:

o

ot
qint
12 ða; tÞ � iðx21 � aÞqint

12 ða; tÞ

¼ ði=�hÞ½V 0int
12 þ W int

12 ðtÞ�½q11ða; tÞ � q22ða; tÞ�
þ L12q

int
12 ða; tÞ; ð9Þ

o

ot
qjjða; tÞ ¼ ð�1Þjð2=�hÞIm ½V 0int

21 þ W int
21 ðtÞ�qint

12 ða; tÞ
� �

þ Ljjqjjða; tÞ;
ð10Þ

where

Bint
12 ¼ S�1

11 BS22

¼ expfði=�hÞDD
Z t

0

dt0Eðt0Þ cos½xt0 � u t0ð Þ�gB; ð11Þ

B = q, V 0, Wnd. We evaluate the integral on the right-
hand side of Eq. (11)

R t
0
dt0Eðt0Þ cos½xt0 � uðt0Þ� ¼

ð1=2Þ
R t
0 dt

0Eðt0Þ expð�ixt0Þ þ c:c: with integration by
partZ t

0

Eðt0Þ expð�ixt0Þdt0

¼ 1

�ix
EðtÞ expð�ixtÞ þ 1

ix

Z t

0

dEðt0Þ
dt0

expð�ixt0Þdt0;

ð12Þ

where we put E(0) = 0 without loss of generality.
The time derivative dEðtÞ=dt ¼ ðdEðtÞ=dtÞ exp iuðtÞ½ �þ
iðduðtÞ=dtÞEðtÞ consists of two contributions. The first
one � dEðtÞ=dt is inversely proportional to the pulse
duration tp. The second one �du(t)/dt is proportional
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to the difference between the carrier and instantaneous
pulse frequencies du(t)/dt = x � x (t). Therefore, for
pulses whose duration is much longer than 1/x, and
the frequency change during the pulse action is much
smaller than x, the second term on the right-hand
side of Eq. (12) can be neglected relative to the first
term. With these assumptions we obtain (see also [49])Z t

0

dt0Eðt0Þ cos½xt0 � u t0ð Þ� 
 1

x
EðtÞ sin½xt � uðtÞ�: ð13Þ

Using Eqs. (11) and (13) and the formula [50]
expðiz sin hÞ ¼

Ps¼1
s¼�1J sðzÞ expðishÞ, we have

Bint
nmðtÞ ¼

Xk¼1

k¼�1
JkðzðtÞÞ expfik½xt � uðtÞ�gBnm; ð14Þ

where Jk is the kth-order Bessel function,
zðtÞ ¼ DDEðtÞ=ð�hxÞ. We inset Eq. (14) into Eqs. (9)
and (10), and using a recurrence formula 2(k/z)
Jk (z) = Jk+1(z) + Jk� 1 (z), obtain

o

ot
qint
12 ða; tÞ � iðx21 � aÞqint

12 ða; tÞ

¼ ði=�hÞ½q11ða; tÞ � q22ða; tÞ�
Xk¼1

k¼�1
expfik½xt � uðtÞ�g

� JkðzðtÞÞRðkÞ
12 þ L12q

int
12 ða; tÞ; ð15Þ

o

ot
qjjða; tÞ ¼ ð�1Þjð2=�hÞ

Xk¼1

k¼�1
JkðzðtÞÞ

� Im RðkÞ
21 exp �ik½xt � uðtÞ�f gqint

12 ða; tÞ
n o

þ Ljjqjjða; tÞ: ð16Þ

Here, we have introduced an effective operator R(k) for
the interaction between electronic states 1 and 2, whose
matrix elements are

RðkÞ
12 ¼ V 0

12 � �hkx
D12

DD
: ð17Þ

Effective operator R(k) describes both the radiationless
ðV 0

12 6¼ 0Þ and radiation (D12 6¼ 0) transitions 1 ! 2,
and the interference between them [3] as well.

Let us evaluate different contributions to RðkÞ
12 for the

transition |1æ ! |2æ in the reaction centers (see Fig. 2).
For k = 1, x � 800 cm�1, D12 � 0.1 D, DD = D22�
D11 � 10 D, we have �hxðD12=DDÞ � 8 cm�1 < V 0

12

� 30 cm�1. In other words, the field induced radiation-
less transition is more effective than the direct optical
one. It is worthy of noting that this evaluation does not
depend on the field intensity.

2.1.1. N-photon resonances

Let us impose the N-photon resonant condition, i.e.
only Nx be close to the frequency of the transition
1 ! 2, N = 1,2, . . . Then switching to the total interac-
tion picture with the help of the transformation

~q12ða; tÞ ¼ qint
12 ða; tÞ exp �iNðxt � uðtÞÞ½ �; ð18Þ

we obtain

o

ot
~q12ða; tÞ � i x21 � NxðtÞ � a½ �~q12ða; tÞ

¼ ði=�hÞ½q11ða; tÞ � q22ða; tÞ�JN ðzðtÞÞRðNÞ
12

þ L12~q12ða; tÞ; ð19Þ

o

ot
qjjða; tÞ ¼ ð�1Þjð2=�hÞJN ðzðtÞÞIm RðNÞ

21 ~q12ða; tÞ
h i

þ Ljjqjjða; tÞ: ð20Þ
2.2. Equations for components of pseudospin vector

Let us switch to equations for the components of the
pseudospin vector [35]

~vða; tÞ ¼ i ~q21ða; tÞ � ~q12ða; tÞ½ �;
~uða; tÞ ¼ ~q12ða; tÞ þ ~q21ða; tÞ;
�wða; tÞ ¼ q22ða; tÞ � q11ða; tÞ:

ð21Þ

The last satisfy the following equations:

o

ot
�wða; tÞ ¼ �XN ðtÞ~vða; tÞ þ L12�wða; tÞ � dLsða; tÞ;

o

ot
~uða; tÞ þ ½x21 �NxðtÞ � a�~vða; tÞ ¼ L12~uða; tÞ;

o

ot
~vða; tÞ � ½x21 �NxðtÞ � a�~uða; tÞ ¼ XN ðtÞ�wða; tÞ þ L12~vða; tÞ;

o

ot
sða; tÞ ¼ L12sða; tÞ � dL�wða; tÞ;

ð22Þ

where s(a,t) = q22(a,t) + q11(a,t), dL � ðL11 � L22Þ=2 ¼
ð1=2Þs�1

s xsto=oa. Here, in generalization of the Rabi fre-
quency X ¼ D12EðtÞ=�h for an optical transition we have
introduced the generalized Rabi frequency

XN ðtÞ ¼ �ð2=�hÞJN ðzðtÞÞRðNÞ
12 : ð23Þ

For N = 1, V 0
12 ¼ 0 and DD! 0

XN ðtÞ ¼ X1ðtÞ 
 ð2=�hÞ zðtÞ
2

ð�hxD12=DDÞ ¼
D12EðtÞ

�h
;

ð24Þ

i.e., the generalized Rabi frequency coincides with X.
With X in place of XN(t), Eqs. (22) agree with Eq. (9)
of [37] for N = 1. Such an analogy enables us to extend
some concepts and ideas of population transfer, devel-
oped for optical transitions, to the systems under
consideration.
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3. Approximate models

The solutions, corresponding to Eqs. (19), (20) and
(22), are termed the total model for short, bearing in
mind that they take into account all the relaxations (dif-
fusions) related to electronic coherence and populations
in both electronic states. In this section, we describe a
number of approaches to the total model.
3.1. System with frozen nuclear motion

For pulses much shorter than ss one can ignore all
the terms �Lij on the right-hand sides of Eqs. (19)
and (20). It means that our system can be described
as an ensemble of independent two-level systems with
different transition frequencies corresponding to a pure
inhomogeneously broadened electronic transition. In
this case, Bloch equations (22) can be integrated inde-
pendently for each a. After this the result must be aver-
aged over a. Solutions of undamped Bloch equations
are interesting from the point of view of evaluation
of the greatest possible population of the excited state
due to coherent effects, because these solutions ignore
all the irreversible relaxations destructing coherence.
The corresponding approach is termed ‘‘relaxation-
free’’ model for short.
3.2. Semi-classical (Lax) approximation

For broad electronic spectra satisfying the ‘‘slow
modulation’’ limit, we have r2ss2s � 1, where
r2s = K(0)�h�2 is the LF vibration contribution to a sec-
ond central moment of an absorption spectrum. In the
last case electronic dephasing is fast, and one can use a
semiclassical (short time) approximation [51]. This lim-
it is also known as the case of appreciable Stokes
losses because the perturbation of the nuclear system
under electronic excitation 1 ! 2 (a quantity
WBO2 � WBO1) is large. Then one can ignore the last
term L12~q12ða; tÞ on the right-hand side of Eq. (19)
[33,37,47] that describes relaxation (diffusion) of
~q12ða; tÞ
o

ot
~q12ða; tÞ � i x21 � NxðtÞ � a½ �~q12ða; tÞ


 ði=�hÞ q11ða; tÞ � q22ða; tÞ½ �JN ðzðtÞÞRðNÞ
12 : ð25Þ

Therefore, the solutions which correspond to Eqs. (20)
and (25) are termed ‘‘partial relaxation’’ model for
short [37]. It is worthy to note that the ‘‘partial relax-
ation’’ model offers a particular advantage over the
total model. The point is that the first can be derived
not assuming the standard adiabatic elimination of
the momentum for the non-diagonal density matrix,
which is incorrect in the ‘‘slow modulation’’ limit [52]
(see Appendix A).
3.3. Equations for vibrationally non-equilibrium

populations

Solving Eq. (19) for ~q12ða; tÞ and substituting the cor-
responding expression into Eq. (20) for qjj(a,t), we
obtain
o

ot
qjjða; tÞ ¼

ð�1Þj�1

2
Re

Z 1

�1
da0

Z 1

0

dxXN ðtÞ

� XNðt � xÞ�w a0; t � xð ÞG12ða; t; a0; t � xÞ
� expf�iN ½xx� ðuðtÞ � uðt � xÞÞ�g
þ Ljjqjjða; tÞ; ð26Þ
if EðtÞ ¼ 0 for t 6 0. Here, G12(a,t;a 0,t 0) is the Green�s
function of Eq. (19) [10,37,53].

In this section, we consider the slow modulation limit
when r2ss2s � 1, and pulses are longer than irreversible
dephasing time of the electronic transition T 0 = (ss/
r2s)

1/3 (i.e. tp � T 0) with a moderate phase modulation
rate when |dx(t)/dt|T 0 < (T 0)�1 [33]. In addition the
pulse intensity is limited by the condition
1
2

ffiffiffiffiffiffi
p

2r2s

q
jXN maxj2 � ðT 0Þ�1, which means that probability

of the light-induced electronic transition is much smaller
than reciprocal irreversible dephasing time. Then the
variable x in Eq. (26) is of the order of the relaxation
time of the non-diagonal element of the density matrix,
which is about x � T 0 � t for pulses under considera-
tion. Therefore, one can disregard by changing the
inversion �wða; tÞ and generalized Rabi frequency XN(t)
in Eq. (26) during time x and take them outside the inte-
gral over x
o

ot
qjjða; tÞ ¼

ð�1Þj�1

2
X2

N ðtÞ

�
Z 1

�1
da0IN ða; a0; tÞ�w a0; tð Þ þ Ljjqjjða; tÞ;

ð27Þ

where we denoted
INða; a0; tÞ ¼ Re

Z 1

0

dxG12ða; t; a0; t � xÞ

� exp �iN xx� ðuðtÞ � uðt � xÞÞ½ �f g:
ð28Þ
In what follows, using the method, which is similar to
that of Section IVC of [37], we obtain the balance equa-
tions for the quantity qjj(a,t)
o

ot
qjjða; tÞ ¼ ð�1Þj�1KN ða; tÞ�wða; tÞ þ Ljjqjj a; tð Þ; ð29Þ
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where

KN ða0; tÞ ¼
1

2
X2

NðtÞ
Z 1

�1
daIN ða; a0; tÞ

¼ 1

2
X2

NðtÞ
Z 1

0

dx cos ðxel � NxÞxþ NðuðtÞ½

� u t � xð ÞÞ � ssð1� expð�x=ssÞÞða0 � xst=2Þ�

� exp

�
r2sss

�
1

2
ssð1� expð�x=ssÞÞ

� ð3� expð�x=ssÞÞ � x
��

: ð30Þ

The first term on the right-hand side of Eq. (29)
�KN(a,t) describes radiation and radiationless transi-
tions between electronic states.

To evaluate the magnitude KN(a,t) [see Eq. (30)], we
will use a short time approximation similar to Section
IVC of [37]. As a result we obtain

KN ða; tÞ 

1

2
X2

N ðtÞ
Z 1

0

dx cos½ðx21 � NxðtÞ � aÞx�

� exp � 1

3
ðx=T 0Þ3

� �
: ð31Þ

One can see from Eq. (31) that the function KN(a,t) has a
peak at a = x21 � Nx(t), i.e. at instantaneous intersec-
tions of the Nth ‘‘photonic replication’’ with the corre-
sponding electronic states.

Eq. (29) along with Eqs. (30) and (31) is the general-
ization of Eq. (30) of [37], Eqs. (3.2) and (3.3) of [9] and
Eq. (29) of [10] to the control of ET with chirped pulses.
In addition, Eqs. (29)–(31) generalize the equations of
the references under discussion to the case of simultane-
ous existing both radiation and radiationless transitions.

3.3.1. Integral equation

In the extreme slow modulation limit whenffiffiffiffiffiffi
r2s

p
T 0 � 1, the right-hand side of Eq. (31) can be eval-

uated as the following:

KN ða; tÞ 

p
2
X2

N ðtÞdðx21 � NxðtÞ � aÞ: ð32Þ

The Green�s function of Eq. (29) [47]

Gjj a; t; a0; t0ð Þ ¼ 2pr t � t0ð Þ½ ��1=2

� exp
�
�


a� dj2xst

� �
� a0 � dj2xst

� �
� Sðt � t0Þ

�2
= 2rðt � t0Þð Þ

�
; ð33Þ

gives the conditional probabilities for a stochastic
Gaussian process. In the last equation r(t � t 0) =
r2s[1 � S2(t � t 0)]. Integration of Eq. (29) is achieved
by Green�s function (33) for the initial condition

q 0ð Þ
jj að Þ ¼ dj1 2pr2sð Þ�1=2 exp �a2= 2r2sð Þ


 �
: ð34Þ
Using evaluation (32), we have

qjjða; tÞ ¼ q 0ð Þ
jj að Þ þ ð�1Þj�1 p

2

�
Z t

0

dt0X2
N ðt0ÞGjj a; t;x21 � Nxðt0Þ; t0ð Þ

� �w x21 � Nxðt0Þ; t0ð Þ: ð35Þ

Putting a = x21 � Nx(t) in Eq. (35), we obtain an
integral equation for a dimensionless quantity
DNðtÞ � �

ffiffiffiffiffiffiffiffiffiffiffi
2pr2s

p
�wðx21 � NxðtÞ; tÞ

DNðtÞ ¼ exp �bEðNÞ
A1 ðtÞ

h i
� ð2p=r2sÞ1=2

1

4

�
Z t

0

dt0X2
N t0ð ÞDN t0ð ÞR0

N t; t0ð Þ; ð36Þ

where the quantity

R0
N t; t0ð Þ ¼ 1� S2 t� t0ð Þ


 ��1=2

�
X2

j¼1

exp

�
�b EðNÞ1=2

Aj ðtÞ �EðNÞ1=2
Aj t0ð ÞS t� t0ð Þ

h i2
�

1� S2 t� t0ð Þ

 ��

ð37Þ

describes the contributions from the induced radiation-
less and direct optical transitions 1 ! 2 (j = 1) and the
induced transitions 2 ! 1(j = 2) to DN(t). Here, we have
introduced notations, which are similar to those of used
in the electron transfer theory [54]: DEN ðtÞ ¼
�h½NxðtÞ � xel

21� – the time-dependent energy gap where
xel

21 ¼ x21 � xst=2 is the frequency of pure electronic
transition 1 ! 2; Er = �hxst/2 – the reorganization
energy; EðNÞ

Aj ðtÞ ¼ ½DEN ðtÞ þ ð�1ÞjEr�2=ð4ErÞ – the activa-
tion energy in electronic state j.

The quantity DN(t) enables us to calculate the popu-
lations of the electronic states nj(t). Using Eqs. (6) and
(33)–(35), we obtain

njðtÞ ¼ d1j þ �1ð Þj 1
4

ffiffiffiffiffiffi
2p
r2s

s Z t

0

dt0X2
N t0ð ÞDN ðt0Þ: ð38Þ

The computational technique for solution of integral
equation (36) is similar to that of Eq. (17) of [33].
4. Extending concepts and ideas of optical population

transfer to long range electron transfer systems

4.1. Generalized pulse area

The system response to non-phase modulated pulse
depends on the detuning x21 � Nx � a and on the gen-
eralized pulse area

A ¼
Z þ1

�1
XN ðtÞdt; ð39Þ

that reduces tousualdefinition forDD = 0(seeEq. (24)). In
particular, for light-induced non-radiative ET (D12 = 0)
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A ¼ � 2

�h
V 0

12

Z þ1

�1
JN ðzðtÞÞdt: ð40Þ

Fig. 3 shows the generalized pulse area Eq. (40) for a
Gaussian pulse EðtÞ ¼ EðtÞ where

EðtÞ ¼ E0 exp ð�d2=2Þðt � t0Þ2
h i

ð41Þ

as a function of the pulse duration ðtp ¼ 2
ffiffiffiffiffiffiffiffi
ln 2

p
=dÞ and

peak amplitude ðzmax ¼ DDE0=ð�hxÞÞ for light-induced
one-photon (N = 1) non-radiative ET (DD = 70 D).
The area dependence on zmax is non-monotone through
the Bessel function presence in Eq. (40). Optimal condi-
tions for the population transfer take place at definite
pulse amplitudes that correspond to maxima of the Bes-
sel function. One can see that the area can reach p (for
zero detuning) for the values of the electron coupling
V 0

12 � 100 cm�1 and pulse durations �100 fs at moder-
ate intensities �2 · 109 W/cm2.

4.2. Adiabatic rapid passage

Let us consider strongly chirped pulses when the
pulse duration is much larger than that of the transform
limited one (see [37,55,56]). For these conditions, using
the generalized Rabi frequency, one can extend the
ARP criteria for a two-level system [21,37,57,58] to the
following:

ðT 0Þ�2
;
dxðtÞ
dt










 � jXN ðtÞj2; ð42Þ

where T 0 is the irreversible dephasing time of the elec-
tronic transition (T 0 = (ss/r2s)

1/3 for electronic transition
exposed to the Markovian Gaussian-correlated noise
[33,37]), and we assumed the resonance conditions, i.e.
equality x21 � a = Nx(t) is realized for any a at a defi-
nite instant of time. For light-induced radiationless tran-
sitions (D12 = 0) the generalized Rabi frequency
becomes
5 10 15
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Fig. 3. Generalized pulse area for light-induced one-photon (N = 1)
non-radiative ET as a function of pulse duration and peak amplitude.
XN ðtÞ ¼ �ð2=�hÞJNðzðtÞÞV 0
12: ð43Þ

Consider linear chirped pulses of the form

EðtÞ ¼ EðtÞ exp i

2
lðt � t0Þ2

� �
; ð44Þ

where EðtÞ is determined by Eq. (41). If chirped pulses
are obtained by changing the separation of pulse com-
pression gratings, the parameters d and l are determined
by the following formulae [27,33]:

d2 ¼ 2s2p0 s4p0 þ 4U002ðxÞ
h i.

;

l ¼ �4U00ðxÞ s4p0 þ 4U002ðxÞ
h i.

; ð45Þ

where sp0 ¼ tp0=
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
, tp0 is the pulse duration of the

corresponding transform-limited pulse, and U00(x) =
U00(m)/(4p2) is the chirp rate in the frequency domain.
For strongly chirped pulses 2jU00ðxÞj � s2p0 (see
[55,56]), and |dx(t)/dt| = |l| 
 1/|U00(x)|. Therefore,
ARP criterion (42) for light-induced radiationless transi-
tions (see Eq. (43)) can be written as follows:

ðT 0Þ�2
; 1=jU00ðxÞj � jXN ðtÞj2

¼ jð2=�hÞV 0
12JN zðtÞð Þj2: ð46Þ

Using the last inequalities, one can obtain approximate
estimates: T 0 � 50 fs and U00(m) � 8 · 104 fs2 for V 0

12 �
100 cm�1 and N = 1, bearing in mind that
J1max = 0.5815.

It is worthy to note that in contrast to inequalities
(46), the corresponding estimate for direct optical tran-
sitions (D12 6¼ 0, V 0

12 ¼ 0 and DD ! 0) [37] does not con-
tain the chirp rate in the frequency domain U00(x). The
point is that in the last case the square of the Rabi fre-
quency is proportional to the pulse intensity, which de-
creases as 1/|U00(x)| for strongly chirped pulses. In
contrast, the square of the generalized Rabi frequency
for a light-induced radiationless transition on the
right-hand side of Eq. (46) is confined by the value of
jð2=�hÞV 0

12JN maxj2.

4.3. Intrapulse pump–dump process

An effective intrapulse pump–dump process is real-
ized when populations of both electronic states are of
the same order of magnitude, i.e. n2 � n1. It corresponds
to the value of the saturation parameter for a direct
optical transition [33,37] Q0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=ð2r2sÞ

p
jXmaxj2tp=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 2=ð2r2sÞ
p Rþ1

�1 jXðtÞj2 dt � 1 where Xmax is the maxi-
mum value of the Rabi frequency X(t) and we used
Eq. (41). Bearing in mind Eq. (38) and the generalized
Rabi frequency XN(t) Eq. (23), the last criterion can be
replaced by

Q0
N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=ð2r2sÞ

p Z þ1

�1
jXN ðtÞj2 dt � 1; ð47Þ
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where Q0
N can be named the generalized saturation

parameter. Let us evaluate the last magnitude for light-
induced radiationless transitions ðXN ðtÞ ¼ �ð2=�hÞJN

ðzðtÞÞV 0
12Þ and strongly chirped pulses considered in Sec-

tion 4.2. ThenZ þ1

�1
jXN ðtÞj2 dt � jð2=�hÞV 0

12JN j2tp


 2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
jð2=�hÞV 0

12JN j2jU00ðxÞj=sp0
and we obtain, using Eq. (47)

jð2=�hÞV 0
12JN j2 �

sp0
ffiffiffiffiffiffi
r2s

p

2 ln 2

1

jU00ðxÞj : ð48Þ

The first multiplier on the right-hand side of Eq. (48) is
about 1 for typical experimental conditions, i.e.
sp0

ffiffiffiffiffiffi
r2s

p
=ð2 ln 2Þ � 1. By this means criterion (48) is

weaker than the corresponding criterion for ARP Eq.
(46). Therefore, for V 0

12 � 100 cm�1 and N = 1 an intra-
pulse pump–dump process can be realized when
U00(m) P 8 · 104 fs2.
V 0
12 ðcm�1Þ DD (D)

ffiffiffiffiffiffi
r2s

p ðcm�1Þ x (cm�1) tp0
(fs)

Dx (FWHM)
(cm�1)

Emax½U00ðmÞ ¼ 0� ðV=cmÞ zmax[U00(m) = 0]

N = 1 100 70 560 9434 10 1471 7.5 · 104

N = 2 100 663 13 1131 15
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5. Numerical solution

The computational technique for solution of coupled
equations (22) is similar to that of Eq. (9) of [37]. We use
dimensionless magnitudes: a time �t � t=ss, a coordinate
x ¼ a=r1=2

2s , and the dimensionless shift between poten-
tial surfaces x0 ¼ xst=r

1=2
2s ¼ ½�hxst=ðkBT Þ�. In these terms

the Fokker–Planck operator L12 takes a standard form:
L12 = o2/ox2 + (x � x0/2)o/ox + 1, and dL = (x0/2)o/
ox. We seek a solution of Eq. (22) in the form of a basis
set expansion with eigenfunctions of the diffusion oper-
ator L12, /n(x � x0/2), which are proportional to Her-
mite polynomials

~u x;�tð Þ
~v x;�tð Þ
�w x;�tð Þ
s x;�tð Þ

2
6664

3
7775 ¼

X1
n¼0

/n ðx� x0=2Þ=
ffiffiffi
2

p� � un �tð Þ
vn �tð Þ
�wn �tð Þ
sn �tð Þ

2
6664

3
7775:

This leads to infinite set of coupled ordinary differential
equations for expansion coefficients unð�tÞ; vnð�tÞ;
�wnð�tÞ and snð�tÞ, which has to be truncated at a finite
number n = Nf and then can be integrated numerically
(see details in [37]).
φ''(ν), fs

Fig. 4. Acceptor state population n2 after the completion of the pulse
action as a function of U00(m) for the total (solid lines), partial
relaxation (dashed lines), and relaxation-free (dotted lines) models.
Frequency detuning (x � x21)/xst = 0; the correlation time ss = 1 ps
(a), 10 ps (b), and 100 ps (c).
6. Results and discussions

Let us study the influence of the chirp rate in the
frequency domain U00(m) on the acceptor state popula-
tion n2 after the completion of pulse action. We con-
sider linear chirped pulses determined by Eqs. (41),
(44) and (45). The pulse chirping does not change a
pulse spectrum. It only stretches a pulse and reduces
its peak intensity. We have chosen laser pulses with
a spectral full width at half maximum (FWHM) Dx
that is comparable with the electronic transition band-
width. Figs. 4 and 5 show the calculation results of n2
as a function of U00(m) for different values of relaxation
times (Fig. 4) and different detunings of the exciting
pulse carrier frequency x with respect to the frequency
of Franck–Condon transition x21 (Fig. 5), correspond-
ing to the ‘‘relaxation-free’’, ‘‘partial relaxation’’ and
total models. These figures correspond to one-photon
(N = 1) light-induced radiationless (D12 = 0) transi-
tion. The values of the system and pulse parameters
are given in table where Emax½U00ðmÞ ¼ 0� and
zmax[U00(m) = 0] denote maximum field amplitude and
zmax, respectively, for the transform-limited (non-
chirped) pulse.
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Fig. 5. Acceptor state population n2 after the completion of the pulse
action as a function of U00(m) for the total (solid lines), partial
relaxation (dashed lines), and relaxation-free (dotted lines) models
when ss = 10 ps. Frequency detuning (x � x21)/xst = 0.7 (a), 0 (b) and
�0.7 (c).
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The calculated dependences n2(U00(m)) are confined to
the values of an argument |U00(m)| > 30,000 fs2 to exclude
ultrafast (�2 fs) time oscillations of the generalized Rabi
frequency X1ðtÞ ¼ �ð2=�hÞJ 1ðzðtÞÞV 0

12, since our theory is
correct only for interactions whose duration is much
longer than 1/x (see Eq. (13)). Such oscillations arise
for rather large z when |U00(m)| < 30,000 fs2 due to non-
linear dependence of Bessel function J1 on z(t).

6.1. Influence of dissipation on acceptor state population

6.1.1. Population behavior for relaxation-free model

Let us consider first the influence of dissipation on the
acceptor state population n2 (Fig. 4). For moderately
large |U00(m)| � (1.2 � 2.0) · 105 fs2 and relatively long
correlation times ss P 10 ps, the acceptor state popula-
tion n2 reaches the value, which is close to its maximum
that stands out above 0.9 for the relaxation-free model.
In the last case the further increase in |U00(m)| causes the
value of n2 to increase slightly. Such a behavior corre-
sponds to that predicted by ARP criteria (42) and
(46). When |U00(m)| = 1.2 · 105 fs2, the value of zmax is
equal to 1.916. Then J1(zmax) 
 J1max, and according
to the numerical estimate immediately following Eq.
(46), a relatively large value of n2 for the conditions un-
der consideration can be explained by ARP, because
|U00(m)| = 1.2 · 105 fs2 > 8 · 104 fs2 (1/T 0 = 0 for the
relaxation-free model). Since a pulse energy is conserved
on the chirping, i.e.

Rþ1
�1 E2ðtÞdt � S ¼ const, the value

of zmax can be presented as

zmax ¼
DD
�hx

E0 

DD
�hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sp0S

jU00ðxÞj
ffiffiffiffiffiffi
2p

p
s

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU00ðxÞj

q�
;

ð49Þ

using Eqs. (41), (44) and (45) for strongly chirped pulses.
When the magnitude |U00(m)| increases in the region
|U00(m)| > 1.2 · 105 fs2, the value of J1(zmax) decreases but
not faster than �zmax/2, i.e. J1(zmax) > zmax/2, since
J1(zmax). zmax/2 for |zmax| � 1. The last value is changed
as zmax=2 � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU00ðxÞj

p
. In other words, the value of

J1(zmax) decreases not faster than � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jU00ðxÞj

p
. It

means that the criterion 1=jU00ðxÞj � jð2=�hÞV 0
12J 1ðzðtÞÞj2

is satisfied better when |U00(m)| increases in the region
|U00(m)| > 1.2 · 105 fs2 resulting in a small increasing of n2
for the relaxation-free model.

6.1.2. Population behavior in the presence of relaxation

Fig. 4 shows a noticeable dependence of the acceptor
state population n2 on relaxation time. The point is that
the ARP criterion (46) for the total model includes an
inequality ðT 0Þ�2 � jð2=�hÞV 0

12J 1ðzðtÞÞj2 as well. For
|U00(m)| = 1.2 · 105 fs2 when J1(zmax) 
 J1max, the last ine-
quality is satisfied for both ss = 10 ps (T 0 = (ss/r2s)

1/3

= 96.5 fs) and ss = 100 ps (T 0 = 208 fs) (see the numer-
ical estimate immediately following Eq. (46)). In these
cases the population transfer conditions are close to
those of ARP (see Figs. 4 and 4(b) and (c)). The value
of n2 is slightly larger for ss = 100 ps, because the
ARP condition is satisfied better for this case. However,
when |U00(m)| increases in the region |U00(m)| > 1.2 · 105

fs2, the value of J1(z(t)) decreases, and the ARP criterion
ceases to be satisfied. It explains decreasing n2 (especially
for ss = 10 ps) in the region |U00(m)| > 1.2 · 105 fs2 for the
total and the partial relaxation models, which give very
similar results (Fig. 4(b)).

When ss = 1 ps (T 0 = 45 fs), the ARP criterion
ðT 0Þ�2

< jð2=�hÞV 0
12J 1ðzðtÞÞj2 ceases to be satisfied. There-

fore, Fig. 4(a) shows a situation corresponding to the
intrapulse pump–dump process (see Section 4.3).

6.2. Influence of detuning on acceptor state population

Fig. 5 shows a noticeable dependence of the acceptor
state population n2 on detuning x � x21. The popula-
tion transfer is largest for zero detuning x � x21 (Fig.
5(b)) when the transfer conditions are close to those
of ARP (see discussion for ss = 10 ps in Section 6.1),
and diminishes when x � x21 is different from zero
(Fig. 5(a) and (c)).

To understand such a behavior, we will consider the
‘‘second condition to the adiabatic criterion’’ in terms
of [57,58]: to realize the ARP, a transition must start
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and come to the end far from resonance. Moreover, one
of the criteria Eq. (42): (T 0)�2 � |XN(t)|

2 has been ob-
tained, using the Landau–Zener (LZ) model [59,60],
which is correct only when the second condition to the
adiabatic criterion is satisfied. To clarify in what extent
the last condition is satisfied for the chirped controlled
long-range ET, we will consider the vibrationally non-
equilibrium populations� behavior when detunings
x � x21 correspond to those presented in Figs. 5 and
5(b) and (c).

Fig. 6 presents the time evolution of vibrationally
non-equilibrium populations qii(a,t) calculated by solv-
ing coupled differential equations (22) for the total
model (see also Section 5) when U00(m) = 120,000 fs2

and detunings (x � x21)/xst are equal to 0 (the left col-
umn) and �0.7 (the right column). In addition, Fig. 6
shows the effective diabatic potentials related to the
acceptor state 2 and the ‘‘photonic replication’’ (‘‘mov-
ing’’ potential) of the donor state 1 [33]

UjðaÞ ¼ Ej þ dj1�hxðtÞ þ �h a� dj2xst

� �2
= 2xstð Þ; j ¼ 1; 2;

ð50Þ
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Fig. 6. Vibrationally non-equilibrium populations of the ground
(solid line) and excited (dashed line) states in the beginning (a), in the
middle (b) and at the end (c) of exciting pulse for ss = 10 ps and
positive chirp U00(m) = 1.2 · 105 fs2. Frequency detuning (x � x21)/
xst = 0 (left column) and �0.7 (right column). Other parameters are
identical to those of Fig. 5, x ¼ a=r1=2

2s . Solid lines 2 and 1 0 are
effective diabatic potentials related to acceptor state 2 and ‘‘photonic
replication’’ 1 0 of the donor state. The corresponding time-dependent
adiabatic potentials are shown by dotted lines. Inset: Electric field
amplitude EðtÞ (solid line) and the generalized Rabi frequency
(dashed line), the arrows show the instants of time corresponding to
figures (a), (b) and (c).
and the corresponding time-dependent adiabatic
potentials

U�ða; tÞ ¼
1

2
U 1ðaÞ þU 2ðaÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½U 1ðaÞ �U 2ðaÞ�2 þ �h2X2

1ðtÞ
q� �

;

where dji is the Kronecker delta. Consider first the left
column. In an early stage of the exciting pulse all the
population is found in the ground state (Fig. 6(a), left)
far from the crossing point. In the middle of the pulse
(Fig. 6(b), left) the population of the excited diabatic
state occurs, and the vibrationally non-equilibrium
populations are localized near the avoided crossing.
In the end of the pulse (Fig. 6(c), left) a largest part
of the population has been transferred to the acceptor
diabatic state, and the corresponding vibrationally
non-equilibrium populations are localized far from
the avoided crossing. By this means the ARP-like pop-
ulation transfer is realized in the case under considera-
tion due to the fulfillment of the second condition to
the adiabatic criterion. The last condition enables us
to use the LZ model to describe the population transfer
under discussion.

Let us consider the fulfillment of the second condi-
tion to the adiabatic criterion for non-zero detuning
x � x21 (the right column of Fig. 6). One can see that
in contrast to zero detuning excitation, the vibration-
ally non-equilibrium populations of the diabatic states
remain near the avoided crossing in the end of the
pulse (Fig. 6(c), right). The point is that the exciting
pulse spectrum is limited and of the same order as
the transition bandwidth in our simulations. Therefore,
the transition under discussion starts far from reso-
nance and comes to the end near resonance. That is
to say, the second condition to the adiabatic criterion
fails for non-zero detuning x � x21. It explains the
dependence of n2 on detuning x � x21 observed in
Fig. 5. By this means ARP is realized when the detun-
ing of the pulse carrier frequency with respect to the
frequency of Franck–Condon transition is close to
zero.

6.3. Population transfer for two-photon resonance

Fig. 7 presents the population transfer for two-pho-
ton resonance conditions (N = 2) when the spectral
width of the pulse is effectively doubled (see Eq. (37)).
The values of the system and pulse parameters are given
in the foregoing table. The rest parameters were the
followings: detuning (2x � x21)/xst = �0.5, ss = 300 fs
(T 0 = 27 fs). The results for transform-limited pulses
(2a,2b) of the same duration as that of a chirped pulse
with a given U00(m) are also presented for comparison.
One can see from Fig. 7 that the population transfer is
essentially increased owing to pulse chirping. Dashed
lines (1c,2c) in this figure represent the results obtained
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Fig. 7. Acceptor state population n2 after the completion of the pulse action as a function of U00(m) for two-photon resonance (N = 2) and detuning
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for correlation time ss = 300 fs, (b) relaxation-free model, (c) ‘‘incoherent’’ solution of integral equation (36) for ss = 300 fs.

88 B.D. Fainberg et al. / Chemical Physics 307 (2004) 77–90
by the solution of integral equation (36) of Section 3.3.1,
which are in a good agreement with complete solution
(1a,2a).

6.4. Comparison of the total and approximate models

Figs. 4 and 5 show a good agreement between calcu-
lation results for the ‘‘partial relaxation’’ (Eqs. (20) and
(25)) and the total (Eqs. (19) and (20)) models. It is a
good point since in the contrast to the last model, the
‘‘partial relaxation’’ model does not involve the assump-
tion that the momentum is instantly equilibrated (see
Appendix A).

Another good point is a close agreement between
the total model and the integral equation solution
for the population transfer under two-photon reso-
nance conditions (Fig. 7). The point is that integral
equation (36) of Section 3.3.1 corresponds to the
point-transition model (see Eq. (32)), for which the
standard adiabatic elimination of the momentum is
correct [52,61].
7. Conclusion

In this work we have studied an ultrashort chirped
pulse regime of controlling a long range electron
transfer. We considered a two state electronic donor/
acceptor system, possessing a large difference of per-
manent dipole moments between donor and acceptor
states 1 and 2, with relaxation treated as a diffusion
on electronic potential energy surfaces. This relaxation
model has enabled us to trace continuously the transi-
tion from a coherent population transfer to incoherent
one. Using an interaction picture, we have derived the
equations for the density matrix of the system being
discussed under the action of intense chirped pulses.
We have introduced an effective operator R(k) for
the interaction between donor and acceptor states,
which describes both the radiationless and radiation
transitions 1 ! 2, and the interference between them
as well. In addition, we have introduced the general-
ized Rabi frequency XN(t) under the N-photon reso-
nant condition. It has enabled us to extend the
concepts and ideas of population transfer, developed
for optical transitions, to the ET (radiationless proc-
ess) controlled with strong electromagnetic field. We
have shown that it is possible to realize the ‘‘radia-
tionless’’ analogies to p-pulse excitation, ARP and
intrapuse pump–dump process. However, realizing
the ‘‘radiationless’’ ARP, for example, is more difficult
than that of usual optical ARP, and requires that the
correlation time ss of the solvent be longer than a few
picoseconds. It can be achieved by decreasing the tem-
perature of the solvent, and even its freezing. Estima-
tions carried out in Sections 4.2 and 4.3, enable us to
choose experimental condition for realizing ‘‘radiation-
less’’ ARP and pump–dump process, respectively.

A number of approaches were invoked to model a
purely coherent (the relaxation-free model) or incoher-
ent (balance equations and the integral equation of
Section 3.3) transfer. A comparison between the total
model behavior and those of the approaches to it has
shown that the type of population transfer (coherent
or incoherent) strongly depends on the pulse chirp
and the relaxation time. We have obtained a physi-
cally clear picture of the analogy to ARP for the
chirped controlled long-range ET by studying the vib-
rationally non-equilibrium populations behavior and
careful examination of all the conditions needed for
ARP.

We have studied the population transfer for two-pho-
ton resonance conditions as well.
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Appendix A. Derivation of ‘‘partial relaxation’’ model

without adiabatic elimination of the momentum

The ‘‘partial relaxation’’ model can be derived not
assuming the standard adiabatic elimination of the
momentum p for the non-diagonal element of the den-
sity matrix q12. Really, in the Wigner representation
[62–64] equation for q12 may be written as (see Eq. (3))

o

ot
qW12ðq; p; tÞ ¼ �ði=�hÞ½ðE1 � E2Þ þ ðU 1ðqÞ

� U 2ðqÞÞ�qW12ðq; p; tÞ � ði=�hÞ
� ½W 11ðtÞ � W 22ðtÞ�qW12ðq; p; tÞ
þ ði=�hÞ½V 0

12 þ W 12ðtÞ�
� ½qW11ðq; p; tÞ � qW22ðq; p; tÞ�
þ LFP12qW12ðq; p; tÞ: ðA1Þ

Eq. (A1) has been derived for harmonic potentials
UjðqÞ ¼ Ej þ 1

2
~x2ðq� dj2dÞ2 by generalization of equa-

tions of [10,45,52] where

LFP12 ¼ �p
o

oq
þ o

op
c
b

o

op
þ cp þ 1

2

d

dq
U 1ðqÞ þ U 2ðqÞð Þ

� �

is the Fokker–Planck operator for overdamped Brow-
nian oscillator with attenuation constant c.

Using the interaction picture and the N-photon reso-
nant condition, one can obtain similar to Eq. (19)

o

ot
~qW12ðq; p; tÞ ¼ �ði=�hÞ½ðE1 � E2Þ þ NxðtÞ

þ ðU 1ðqÞ � U 2ðqÞÞ�~qW12ðq; p; tÞ
þ ði=�hÞ½qW11ðq; p; tÞ

� qW22ðq; p; tÞ�JN ðzðtÞÞRðNÞ
12

þ LFP12~qW12ðq; p; tÞ; ðA2Þ

where

~qW12ðq; p; tÞ ¼ qint
W12ðq; p; tÞ exp �iNðxt � uðtÞÞ½ � ðA3Þ

and qint
W12ðq; p; tÞ is determined by Eq. (11).

In the case of appreciable Stokes losses when the per-
turbation of the nuclear system under electronic excita-
tion 1 ! 2 (a quantity U2(q) � U1(q)) is large, the
quantity ~qW12ðq; p; tÞ oscillates fast due to the first term
on the right-hand side of Eq. (A2) (see also [52]). There-
fore, to the first approximation, on can neglect changes
of ~qW 12ðq; p; tÞ due to the last term on the right-hand side
of Eq. (A2). Neglecting this term, integrating both side of
Eq. (A2) over momentum, and bearing in mind that

~qijðq; tÞ ¼
Z 1

�1
~qWijðq; p; tÞdp ðA4Þ

and a ¼ qd ~x2=�h [65], we obtain Eq. (25). As a matter
of fact, a derivation of Eq. (25) does not involve
the assumption that the momentum is instantly
equilibrated.
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