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We have considered a coherent population transfer to a higher excited singlet state (S2) of molecules with anomalous fluorescence
in molecular assemblies (e.g., a dense medium). A direct excitation to S2 requires light in the UV region. Because of this, the
transition is conveniently realized by a two-step (two-photon) process: S0 → S1 → S2, where transitions S0 → S1 and S1 → S2

correspond to the optical region. We have shown that efficient stimulated Raman adiabatic passage (STIRAP) in the ladder
configuration can be realized in this case, using suitably chirped pulses, to compensate a change of the two-photon transition
frequency in time, induced by the pulses themselves, due to near dipole-dipole interactions. We have provided a reduced state
formulation of the optical control process. Chirping the “pump” pulse that excites transition S0 → S1 is nonequivalent to chirping
the “Stokes” pulse that excites transition S1 → S2, with respect to the population of the intermediate state (S1) in the pulse
nonadiabatic regime. We have also shown that with suitably chirped pulses, efficient STIRAP still persists even for a rather large
decay of the intermediate state.

1. Introduction

Population transfer to a higher singlet state Sn (n > 1) of
complex organic molecules makes no sense, since more often
than not Sn (n > 1) rapidly relaxes back to the first excited
singlet S1 [1–4], though excited-state absorption S1 → Sn
(n > 1) has a profound effect on coherent population transfer
S0 → S1 with shaped laser pulses [5]. The situation reverses
for molecules with anomalous fluorescence like azulene, the
molecule known as the textbook exception to Kasha’s rule
[6], and its derivatives. For such molecules, the first excited
singlet state S1 is very short lived (∼1 ps) due to a conical
intersection [7] and, as a consequence, a strong nonradiative
decay of the transition S1 → S0. However, a higher excited
singlet state S2 is long lived (∼1 ns) displaying a strong
fluorescence band that corresponds to transition S2 → S0

[8–11]. Because of this, there are also reasons to consider a
coherent population transfer to higher excited singlet states
(S2) of the molecules under discussion. However, a direct
excitation to a higher electronic state S0 → S2 requires light
in the UV region where pulse shaping presents difficulties.
Because of this, a coherent population transfer to S2 is

conveniently realized by a two-step (two-photon) process,
S0 → S1 → S2 where transitions S0 → S1 and S1 →
S2 correspond to the optical region. Due to the absence
of the center of symmetry in azulene (belongs to the Cs

point group) and its derivatives, all three transitions S0 →
S2, S0 → S1 and S1 → S2 are allowed. In this regard,
using stimulated Raman adiabatic passage (STIRAP) [12–
16] in the ladder configuration for the population transfer
from S0 to S2 seems rather attractive. Indeed, STIRAP is
a simple and powerful technique for complete and robust
population transfer in three-state quantum systems. Using
this technique, the population is transferred adiabatically
from an initially populated state |1〉 (S0) to a target state
|3〉 (S2), which are coupled via an intermediate state |2〉
(S1) by two pulsed fields. A unique and very useful feature
of STIRAP is that the intermediate state, whose presence
is crucial for providing two strongly coupled single-photon
transitions, never gets populated, not even transiently. The
reason is that throughout the adiabatic evolution of the
system, the population remains trapped in an adiabatic dark
state, which is a superposition of states |1〉 and |3〉 only
and does not involve the intermediate state |2〉 that can be
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a strongly decaying state (S1). Such a dark state is formed by
maintaining a two-photon resonance between the target |3〉
and initial |1〉 states during the interaction.

Azulene is a molecular multilevel system. In this relation,
it is worthy to note the STIRAP application of controlling
non-Franck-Condon transitions in Na2 [17] and adiabatic
passage by light-induced potentials in polyatomic molecules
[18]. The effect of background states on STIRAP was
considered by Kurkal and Rice [19] and Cheng et al. [20].
Nakajima et al. [21] discussed population transfer through
continuum intermediate states.

In this study, we will concentrate on another aspect
of STIRAP in molecular systems. The point is that many
important molecular systems are made out of assemblies
of coupled localized chromophores. Examples are molecular
crystals, organic nanostructures, supramolecular structures,
and so forth, which are of interest from the point of view
of the design of new optical materials with desirable charac-
teristics. Therefore, in this paper, we aim to apply STIRAP
rather to the assembly of interacting azulene molecules (or
its derivatives) than to noninteracting molecules. In gen-
eral, calculating optical properties of interacting molecules
becomes an intractable many-body problem even for a
reduced state formulation of the optical control process in an
isolated molecule which is used in this work (see below). The
local field approximation (see, e.g., [22]) provides a simple
phenomenological way of relating the optical characteristics
of isolated molecules to those of molecular assemblies. In
the local field approximation the corresponding equations of
motion, describing the system evolution, become nonlinear
thus displaying the dependence of the transition frequencies
on optical excitation [23, 24]. Here, we will consider a
dense medium of the molecules with the dependence of
the transition frequencies on optical excitation due to near
dipole-dipole (DD) interactions [25]. In the following, we
show that efficient STIRAP in the ladder configuration can
be achieved in a dense collection of molecules exhibiting
anomalous fluorescence, but only if a change of the two-
photon transition frequency, due to near DD interactions, is
taken into account.

A two-photon resonance between the initial and final
states during the interaction can not be achieved since its
frequency depends on the population of these states (many-
body effect) (see (13) and (20) below). Our goal is to get
an efficient STIRAP in this system. We show that one can
use pulses that are suitably chirped (time-dependent carrier
frequency) to compensate for a change of frequency of
the two-photon transition in time induced by the pulses
themselves (a similar idea was proposed in studies of a two-
state system in relation to Rabi oscillations in inter-subband
transitions in quantum wells [26].)

The outline of the paper is as follows. In Section 2, we
introduce our model and derive a closed set of equations
for the expectation values of one-particle variables in the
local field approximation. In Section 3, we show that suitably
chirped pulses that compensate a change of frequency of
the two-photon transition in time induced by the pulses
themselves enable us to achieve a “dark” state and, hence,
complete population transfer in the interacting media. We

provide numerical solutions of the coupled equations for the
expectation values of one-particle variables in Section 4. We
summarize our results in Section 5.

2. Model and Basic Equations

Consider a dense collection of molecules, with densities such
that there are many molecules within a cubic molecular
resonance wavelength, with three electronic states with
energies E1 < E2 < E3 under the action of two (phase
modulated) pulses E1(t) and E2(t)

E(r, t) =
∑

i=1,2

Ei(t) = 1
2

∑

i=1,2

eiEi(t) exp
(−iωit + iϕi(t)

)
+ c.c.

(1)

The frequencies of which are close to those of the transitions
1 → 2 and 1 → 3, respectively. Here, Ei(t) and ϕi(t) describe
the change of the pulse amplitude and phase in time, ei
are unit polarization vectors, and the instantaneous pulse
frequencies are ωi(t) = ωi − dϕi(t)/dt. Three states, 1, 2, and
3 correspond to singlet states S0, S1, and S2, of the azulene
molecule, respectively (Figure 2). The potential-energy sur-
faces of polyatomic molecules are multidimensional, and the
number of states related to a transition between initial and
final states increases with the number of degrees of freedom
of a molecule. For that reason, it is desirable to have a reduced
space or a reduced state formulation of the optical control
process. We will consider azulene in a Shpol’skii matrix for
low temperatures; the S2 → S1 fluorescence spectrum shows
very narrow lines [10] (see Figure 1). We assume that field
E2(t) connects states 2 and 3 corresponding to S1, with
the excitation of one vibrational quantum of the vibration
1558 cm−1 and the vibrationless state of S2, respectively (see
the second intensive line near λ = 810 nm in Figure 1). Of
course, there is one more (less intensive) line corresponding
to the vibration 1756 cm−1 near the line related to 1558 cm−1.
However, we will consider only one state 2, representing both
vibrationally excited states under discussion in S1.

We assume that state 1 represents the vibrationless state
of a singlet S0 and field E1(t) excites transition 1 → 2 (see
Figure 2), so that the sum of frequencies ω1(t)+ω2(t) is close
to the frequency of purely electronic transition S0 → S2. In
the proposed scheme, the frequencies of transitions 1 → 2
and 2 → 3 are well separated in order to realize STIRAP
(in spite of close energies of purely electronic transitions
S0 → S1 and S1 → S2 [7, 11]), though complete and robust
population transfer is also possible when each of the two laser
pulses interacts with each of the pair of states [27].

The interaction of the dense collection of such systems
with electromagnetic fields can be written as

Ĥint = −
∑

n

P̂n · El,n, (2)

where El,n is the electric field at the location of the
nth molecule (local electric field), and P̂n is its optical
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Figure 1: S2 → S1 fluorescence of azulene in n-hexane ad 77 K [10].
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Figure 2: A reduced states formulation of STIRAP in azulene.
Field E2(t) connects states 2 and 3 corresponding to S1 with the
excitation of one vibrational quantum, and the vibrationless state
of S2, respectively. State 1 represents the vibrationless state of a
singlet S0 and field E1(t) excites transition 1 → 2, so that the
sum of frequencies ω1(t) + ω2(t) is close to the frequency of purely
electronic transition S0 → S2.

polarization operator. The local (microscopic) field is related
to the Maxwell (macroscopic) field E(r, t), (1), by [22, 25]

El,n = E(r, t) +
4π
3

∑

m /=n

Pm, (3)

where Pm denotes the expectation value of P̂m. The second
term on the right-hand side of (3) represents the electrostatic
longitudinal field created by all other particles m ( /=n), that

is, the instantanous dipole-dipole interactions between the
molecules.

Let us introduce excitonic operators Ân,12 ≡ |n1〉〈n2|,
Ân,23 ≡ |n2〉〈n3| and Ân,13 ≡ |n1〉〈n3|, where |nk〉 denotes
the k state of molecule n. Then, the optical polarization
operator of the nth molecule is given by

P̂n =
(

Dn,12Â
+
n,12 + Dn,23Â

+
n,23 + Dn,13Â

+
n,13

)
+ H.c., (4)

where Dn,kk′ is the transition dipole moment connecting
states k and k′ of molecule n, and H.c. denotes Hermitian
conjugate. We also introduce operators n̂mk = |mk〉〈mk|
describing the population of states |mk〉. It is obvious that

n̂m1 + n̂m2 + n̂m3 = I (5)

due to the completeness relation for the 3-level electronic
states space of the mth molecule. Here I is the unit operator.
Operators Ân,kk′ obey the following commutation relation:

[
Âm,kk′ , Â+

m,kk′

]
= n̂mk − n̂mk′ , (6)

where k = 1, 2, k′ = 2, 3, and k < k′. Then, the
Hamiltonian of the dense collection of three-state systems
under consideration can be written as

Ĥ = Ĥ0 + Ĥint, (7)

where

Ĥ0 =
∑

m

∑

k=1,2,3

Emkn̂mk. (8)

Emk is the energy of state k of a molecule m.
Using the Heisenberg equations of motion, one obtains

the equation for the expectation value of any operator F̂

d

dt
〈F̂〉 = i

�

〈[
Ĥ0 + Ĥint, F̂

]〉
≡ i

�
Tr
([
Ĥ0 + Ĥint, F̂

]
ρ
)

,

(9)

where ρ is the density matrix. Straightforward operator
algebra manipulations, using commutation relations, (6),
yield equations for nmk ≡ 〈n̂mk〉 and Am,kk′ ≡ 〈Âm,kk′ 〉 in
the rotating wave approximation (RWA). In the derivation
of these equations, we kept only single-particle variables,
using a factorization into population variables nmk and
polarizationsAm,kk′ in accordance with the local field approx-
imation [22]. Then, switching to the system that rotates with
instantaneous frequency,

am,12 = Am,12 exp
[
iω1t − iϕ1(t)

]
,

am,23 = Am,23 exp
[
iω2t − iϕ2(t)

]
,

am,13 = Am,13 exp
[
i(ω1 + ω2)t − i

(
ϕ1(t) + ϕ2(t)

)]
,

(10)

we obtain equations for the quantities that vary slowly with
time during the period of a light wave. Furthermore, consid-
ering a homogeneous excitation of an assembly of identical
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molecules (Dn,kk′ = Dkk′ ,Emk = Ek,nmk = nk,am,kk′ = akk′),
we get

da12

dt
= −i

{[
ω21 − ω1(t) + p12(n2 − n1)

]
a12 +

Ω1(t)
2

×(n2 − n1)− Ω2(t)
2

a13 +
(
p13 − p23

)
a∗23a13

}
,

(11)

da23

dt
= −i

{[
ω32 − ω2(t) + p23(n3 − n2)

]
a23 +

Ω1(t)
2

a13

+
Ω2(t)

2
(n3 − n2) +

(
p12 − p13

)
a∗12a13

}
,

(12)

da13

dt
= −i

{[
ω31 − ω1(t)− ω2(t) + p13(n3 − n1)

]
a13

+
Ω1(t)

2
a23−Ω2(t)

2
a12 +

(
p12−p23

)
a23a12

}
,

(13)

d

dt

⎛
⎝
n1

n3

⎞
⎠ =

⎛
⎝
−Ω1(t) Im a12

Ω2(t) Im a23

⎞
⎠, (14)

n1 + n2 + n3 = 1, (15)

whereωkk′ = (Ek−Ek′)/� andΩi(t) = (Di,i+1·ei)Ei(t)/� is the
Rabi frequency corresponding to the ith pulse. The strength
of the near DD interaction is given by terms

pkk′ = 4π
3�
|Dkk′ |2N , (16)

where N is the density of molecules [25]. In writing (11)–
(14), we have neglected the population-decay time of state 2
(S1). Extending this consideration to a decaying intermediate
state is made in Section 4.2.

One can easily see from (13) that the two-photon reso-
nance cannot be achieved with the pulses of fixed frequency,
at least due to the presence of the “local field” term p13(n3 −
n1) that depends on the state populations. However, suitably
chirped pulses can compensate the “local field” detuning
p13(n3 − n1), and the first term on the right-hand side of
(13) may be zero during the interaction. We will address the
question of whether the chirping allows the realisation of a
“dark” state and thus allows complete population transfer in
the interacting media in the next section.

3. “Dark” State in the Interacting Media

The expectation values am,kk′ in the system that rotates with
instantaneous frequency, (10), can be expressed through the
density matrix. Indeed,

am,kk′ = Tr
(
âm,kk′ρ

)

= Tr

⎛
⎝|mk〉〈mk′

∣∣∑

j j′

∣∣mj
〉
ρm, j j′

〈
mj′

∣∣
⎞
⎠ = ρm,k′k.

(17)

In particular, for pure states that are realized in the absence
of relaxation, the density matrix can be represented as
ρk′k = c∗k ck′ where ck are the amplitudes of states, and
we consider a homogeneous excitation of an assembly of
identical molecules. This enables us to express akk′ by the
amplitudes of states ck. Putting akk′ = c∗k ck′ in equations
(11)–(15), we get the following equations for the magnitudes
ck:

dc1

dt
= i

Ω1(t)
2

c2, (18)

dc2

dt
= −i

[
ω21−ω1(t)+p12

(
|c2|2−|c1|2

)
+
(
p13−p23

)|c3|2
]
c2

+ i
Ω1(t)

2
c1 + i

Ω2(t)
2

c3,

(19)

dc3

dt
= −i

[
ω31 − ω1(t)− ω2(t) + p13

(
|c3|2 − |c1|2

)

+
(
p12 − p23

)|c2|2
]
c3 + i

Ω2(t)
2

c2,

(20)

|c1|2 + |c2|2 + |c3|2 = 1. (21)

Let us assume that pulses E1(t) and E2(t) are suitably
chirped to fulfill the condition of the two-photon resonance
during the interaction (the first term on the right-hand side
of (20) is equal to zero). Then, one can easily see that under
the adiabatic conditions (dck/dt = 0), the solutions of (18)–
(21) are given by c2 = 0,c3 = −[Ω1(t)/Ω2(t)]c1 and

c1 = Ω2(t)√
Ω2

1(t) + Ω2
2(t)

. (22)

This enables us to obtain the adiabatic “dark” state Ψad =
c1|1〉 + c3|3〉 as a superposition of states |1〉 and |3〉 only,
similar to the case of usual noninteracting media without
local field effects [12]. Complete population transfer occurs if
limt→−∞[Ω1(t)/Ω2(t)] = 0 and limt→+∞[Ω2(t)/Ω1(t)] = 0,
where t → −∞ and t → +∞ correspond to times before and
after the interaction with optical pulses, respectively.

4. Numerical Calculations

4.1. Calculations without Decay. To check these ideas, we
provided numerical solutions of coupled equations (11)–
(15). For this purpose, it is convenient to switch to equations
for the components of the 3-state coherence vector [28]

vkk′ = i(akk′ − ak′k), ukk′ = akk′ + ak′k,

w1 = n2 − n1, w2 = −
√

1
3

(n2 + n1 − 2n3),
(23)
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where k, k′ = 1, 2, 3 and k < k′. These components satisfy the
following equations:

du12

dt
= −Δ21v12 +

Ω2

2
v13,

du23

dt
= −Δ32v23 − Ω1

2
v13,

du13

dt
= −Δ31v13 − Ω1

2
v23 +

Ω2

2
v12,

dv12

dt
= Δ21u12 + Ω1w1 − Ω2

2
u13,

dv23

dt
= Δ32u23 +

Ω1

2
u13 +

Ω2

2

(√
3w2 −w1

)
,

dv13

dt
= Δ31u13 +

Ω1

2
u23 − Ω2

2
u12,

dw1

dt
= −Ω1v12 +

Ω2

2
v23,

dw2

dt
= −√3Ω2v23,

(24)

where detunings with respect to the renormalized optical
transitions are given by

Δ21 = ω21 − ω1(t) + p12w1 +
(
p13 − p23

)
(√

3
3
w2 +

1
3

)
,

(25)

Δ32 = ω32 − ω2(t) +

√
3

2
w2

[
p23 − 1

3

(
p12 − p13

)]

− 1
2
w1
(
p23 + p12 − p13

)
+

1
3

(
p12 − p13

)
,

(26)

Δ31 = ω31 − ω1(t)− ω2(t) +

√
3

2
w2

[
p13 − 1

3

(
p12 − p23

)]

+
1
2
w1
(
p13 + p12 − p23

)
+

1
3

(
p12 − p23

)
.

(27)

In deriving equations (24), we have used the relation akk′ =
c∗k ck′ for pure states.

We considered the excitation of a dense collection of
three-state systems with parameters pkk′ , (16), correspond-
ing to those of azulene with two Gaussian pulses of the
same duration, Ei(t) = E0i exp[−(t − ti)

2/(2τ2)], and the
amplitudes giving the same maximum Rabi frequencies for
transitions 1 → 2 and 2 → 3, ordered counterintuitively,
E2(t) before E1(t). Parameters pkk′ , (16), can be evaluated
through radiation decay times τrad of transitions Si → Sj by
pkk′ = κkk′N , where κkk′ ≡ 1/(8π2ω3

k′kτrad), and τrad were
taken from [8]: τrad(S2 → S0) = 5 · 10−9 s, τrad(S1 → S0) =
8 · 10−7 s and τrad(S2 → S1) = 2 · 10−6 s. This gives κ13 =
1.06 · 10−7 [cm3/s], p13 ≡ p,p12 = 0.05p,p23 = 0.02 p. The
time delay between the pulses was t1 − t2 = 2τ, and the pulse
areas S = ∫ Ω1,2(t)dt = √2πΩmaxτ ranged from 2 to 122. The

product of the strength of the near DD interaction, p, and
parameter τ characterizing the pulse duration, was equal to
pτ = 20. This value can be realized, for example, for the den-
sity of the active molecules N = 3 · 1019 cm−3 and τ = 6.3 ps
(this value of τ exceeds the decay time of the intermediate
state that will be taken into account in Section 4.2). It is wor-
thy to note that N = 3 · 1019 cm−3 corresponds to the mean
distance between active molecules of 3.2 nm justifying the use
of the dipole approximation for the near DD interaction.

One can see from (20) that the frequency of transition
1 → 3 shifts to the blue side during the population transfer
1 → 3, since p13 > 0 and p13 � p12, p23 for azulene. This
denotes that the chirp preserving the two-photon resonance
will not bring other levels into play close to the purely
electronic transition S0 → S2.

Figure 3 shows the state populations, after the comple-
tion of the pulses action as functions of the ratio between the
Rabi frequency at the pulse maximum and parameter p for
ω21−ω1 = 0. Dotted lines correspond to the pulses with fixed
frequencies when ω31 − (ω1 + ω2) = 0. Other lines describe
the population transfer under the two-photon resonance
conditions, achieved by chirping the pulse E1(t) (solid lines)
and E2(t) (dashed lines). Note that pulse chirping enables us
to realize the two-photon resonance during the interaction,
giving rise to efficient and robust population transfer by
STIRAP in interacting media, in contrast to the excitation
with pulses of fixed frequencies. Pronounced oscillations of
the populations in the latter case (dotted lines) can be related
to bistable (or multistable) behavior of the solution of (24),
due to the dependence of the resonance frequency on the
population difference [14, 23]. The bistability effect consists
of a sudden switching of the population from a low level to a
higher level with increasing pump intensity.

Chirping the pulse E2(t) gives rise to a much larger
population of intermediate state 2 for small values of Ωmax/p,
than chirping the pulse E1(t). This can be explained as
follows. Let us assume that the chirped pulse is E1(t). To obey
the two-photon resonance condition (see (20) and (27)),
frequency ω1(t) must be equal to

ω1(t) ≈ ω31 − ω2 + p(n3 − n1) = ω1 + p(n3 − n1), (28)

since for azulene p13 � p12, p23. Substitutingω1(t) from (28)
into (25) for the detuning with respect to the renormalized
frequency of transition 2 → 1 (see also (19)), we get ω21 −
ω1(t)+ pn3 = ω21−ω1 + pn1 = pn1. In other words, detuning
of transition 2 → 1 with respect to ω1(t) comprises pn1

which prevents populating state 2 at the beginning of the
process when n1 is close to 1. In contrast, when one chirps
the pulse E2(t), detuning of transition 2 → 1 with respect to
ω1 comprises ω21−ω1 + pn3 = pn3 which can be close to zero
at the beginning of the process. Therefore, better conditions
for populating state 2 are realized when the chirped pulse is
E2(t).

Figure 4 depicts populations n3 and n2 for the pulses
with fixed frequencies when ω31 − (ω1 + ω2) − p13 = 0
corresponding to the two-photon resonance condition for
the initial populations of states (n1(−∞) = 1, see (28)).
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Figure 3: Populations of the final (a) and intermediate (b) states after the completion of the pulses action as functions of Ωmax/p. Solid lines:
chirping the pulse E1(t), dashed: chirping E2(t), dots: pulses with fixed frequencies for ω31 − (ω1 + ω2) = 0.
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Figure 4: Populations of the final (a) and intermediate (b) states after the completion of the pulses action as functions of Ωmax/p. Solid lines:
chirping the pulse E1(t), dashed: chirping E2(t), dots: pulses with fixed frequencies for ω31 − (ω1 + ω2)− p13 = 0.

Note again that only the pulse chirping gives rise to efficient
and robust population transfer by STIRAP in interacting
media. As to the excitation with pulses of fixed frequencies,
pronounced oscillations remain for both populations n2

and n3, though n3 is essentially smaller than that in
Figure 3.

4.2. Influence of the Decay of Intermediate State. In
Section 4.1, we have shown that efficient STIRAP for pop-
ulation transfer to higher electronic states in interacting
media of molecules with anomalous fluorescence can be
realized in the absence of decay, using suitably chirped pulses.
However, an intermediate state in this process belongs to
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Figure 5: Populations of the final state n3 with the decaying
intermediate state (τΓ = 0.6) after the completion of the pulses
action as functions of Ωmax/p. Solid line: chirping the pulse E1(t),
dashed: chirping E2(t), dots: pulses with fixed frequencies for ω31 −
(ω1 + ω2) = 0. Other parameters are identical to those of Figure 3.

the first singlet S1 which decays very fast into S0. In this
section, we will extend the above consideration to a decaying
intermediate state. We will use (18)–(21) for the magnitudes
ck where (19) is replaced by (29)

dc2

dt
= −1

2
Γc2− i

[
ω21−ω1(t) + p12

(
|c2|2−|c1|2

)

+
(
p13−p23

)|c3|2
]
c2 +i

Ω1(t)
2

c1 +i
Ω2(t)

2
c3

(29)

taking into account a decaying intermediate state (the first
term on the right-hand side of (29)).

We provided numerical solutions of coupled equations
(18), (20), (21), and (29). Figures 5 and 6 show that with
suitably chirped pulses, the efficient STIRAP still persists
even for rather large decay τΓ = 6 corresponding to τ = 6 ps
(see Section 4.1) and 1/Γ = 1 ps. However, for the excitation
with pulses of fixed frequencies, the oscillations of n3 are
smoothed at a large decay which may be related to vanishing
the bistable (or multistable) behavior for this condition.

5. Conclusion

In this work, we have considered a coherent population
transfer to a higher excited singlet state (S2) in molecular
assemblies (e.g., a dense medium) of molecules with anoma-
lous fluorescence. A direct excitation to S2 requires light in
the UV region. Because of this, the transition is conveniently
realized by a two-step (two-photon) process: S0 → S1 →
S2 where transitions S0 → S1 and S1 → S2 correspond
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Figure 6: The same as in Figure 5 only for τΓ = 6.

to the optical region. Since for such molecules, the first
excited singlet state S1 is very short living, using STIRAP in
the ladder configuration for the population transfer S0 →
S2 seems rather attractive, since a unique and very useful
feature of STIRAP is that the intermediate state (S1) never
gets populated, not even transiently. This is provided by
maintaining a two-photon resonance between the target (S2)
and initial (S0) states during the interaction.

The potential energy surfaces of polyatomic molecules
are multidimensional, and the number of states related
to a transition between initial and final states increases
with the number of degrees of freedom of a molecule. We
have provided a reduced states formulation of the optical
control process, using azulene in a Shpol’skii matrix for low
temperatures as an example.

Unfortunately, in molecular assemblies (a dense medium
of molecules) a change of the frequency of the two-photon
transition exists due to near DD interactions. We have shown
that in spite of the frequency change, efficient STIRAP
can be realized in this case as well, using suitably chirped
pulses to compensate a change of the two-photon transition
frequency in time induced by the pulses themselves. Chirping
the “pump” pulse that excites transition S0 → S1 and the
“Stokes” pulse that excites transition S1 → S2 are nonequiv-
alent with respect to the population of the intermediate state
(S1) in the pulse nonadiabatic regime. We have also shown
that with suitably chirped pulses, the efficient STIRAP still
persists, even for a rather large decay of the intermediate
state.

It is worthy to note that the method for the compensation
of two-photon detuning, proposed in our work, can be used
not only in the case of violating the two-photon resonance
due to near DD interactions, but also due to the off-resonant
Stark shift [29]. In general, the pulse chirp must compensate
the two-photon detuning stemming from both cases.
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